References
- I. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning", MIT Press, 2016.
- Pattern Recognition, Pattern Analysis, http://www.ktword.co.kr/abbr_view.phpfim_temp1
- Shlee, cgyoo, iklee, and cjhwang, "White blood cell image Retrieving & Clustering System", The Korean Institute of Information Scientists and Engineers, Vol. 26 No. 2, pp. 530-532, Oct. 1999.
- K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Vol. 6, pp. 1-14, Apr. 2015
- M. D. Zeiler, and R. Fergus, "Visualizing and understanding convolutional networks," In European conference on computer vision, pp. 818-833, Nov. 2014.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, Vol. 1, pp. 1097-1105, Dec. 2012.
- S. Ioffe, and C. Szegedy, "Batch Normalization: Acceler ating Deep Network Training by Reducing Internal Covariate Shift", NIPS, Vol. 3, pp. 1-11, Mar. 2015.
- Y. Tang, "Deep Learning using Linear Support Vector Machines", ICML 2013, Vol. 4, Feb. 2015.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, Dec, 2015.
- K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep Residual Networks" Computer Vision and Pattern Recognition, Vol. 3, pp. 1-15, Jul. 2016.
- Jmchoi, and wslee, "Development of a Poikilocyte Measuring Method Using Image Analysis Software", Lab Med Online, Vol. 3, No. 1, pp. 6-14, Jan. 2013. https://doi.org/10.3343/lmo.2013.3.1.6
- M. Habibzadeh, A. Krzyzak, and T. Fevens, "Comparati ve study of shape, intensity and texture features and support vector machine for white blood cell classification", Journal of Theoretical and Applied Computer Science Vol. 7, No. 1, pp. 20-35, Jan, 2013.
- Y. M. Alomari, S. N. H. S. Abdullah, R. Z. Azma, and K. Omar, "Computational and Mathematical Methods in Medicine", pp. 1-17, Apr, 2014.
- N. Ghane, A. Vard, A. Talebi, and P. Nematollahy, "Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm", J Med Signals Sens, Vol. 7, No. 2, pp. 92-101. Jun. 2017.
- M. I. Razzak, and SaeedaNaz, "Microscopic Blood Smear Segmentation and Classification using Deep Contour Aware CNN and Extreme Machine Learning", Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 49-55, Jul, 2017.
- R. Sorgedrager, "Automated malaria diagnosis using convolutional neural networks in an on-field setting", MA, Delft University of Technology, Jan, 2018.
- M. Xu, S. Z. Abidi, M. Dao, H. Zhao, and G. E. Karniadakis, "A deep convolutional neural network for classification of red blood cells in sickle cell anemia" PLoS Comput Biol, Vol. 13, No. 10, pp. 1-27, Oct, 2017.
- Jhhyun, hylim, and dskang, "A Study on Tracking -Learning-Detection Algorithm and Learning Algorithm for Object Detection System Development", Journal of KIIT. Vol.15, No.12, pp.139-145, Dec. 2017.
- H. N. Mhaskar, S. V. Pereverzyev, and M. D. van der Walt, "A Deep Learning Approach to Diabetic Blood Glucose Prediction", Frontiers in Applied Mathematics and Statistics, Vol. 3, No. 14, pp. 1-11, Jul. 2017.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Neural Information Processing Systems (NIPS), pp. 1097-1105, Feb. 2012.
- Jsyoo, and kclee, "Deep learning based image recognition technology trend", Information and Society, pp. 17-24, Jul. 2017.
- Identity Mappings in Deep Residual Networks Review, https://kangbk0120.github.io/articles/
- A. R, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods". IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34, No. 11, pp. 2274-2282, Nov. 2012. https://doi.org/10.1109/TPAMI.2012.120
- M. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, "Entropy rate superpixel segmentation", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1-14, Jan. 2014.