DOI QR코드

DOI QR Code

Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method

  • 유영린 (한국항공대학교, 항공우주 및 기계공학과) ;
  • 성홍계 (한국항공대학교, 항공우주 및 기계공학부)
  • Yoo, Young-Lin (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2018.02.02
  • 심사 : 2018.04.11
  • 발행 : 2018.04.30

초록

7개의 방정식으로 구성된 DIM을 사용하여 압축성 다상 유동에 대해 연구하였다. 액체와 기체의 상세한 경계면 유동 구조를 얻기 위해 5 차의 MLP와 변형된 HLLC 근사 리만 해법을 포함하는 고차 수치기법이 구현되었다. 수치 방법의 유효성 검증을 위해 물과 공기로 구성된 다양한 1차원 충격관 문제를 해석하였고, 불연속면에 대해 뛰어난 해상도를 얻을 수 있었다. 마하수 1.22의 충격파 조건에서의 2차원 공기-헬륨 기포에 대한 충격파 상호 작용을 수치 해석하였고, 충격파 현상들을 잘 모사하였으며 실험결과와 비교 검증하였다.

A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.

키워드

참고문헌

  1. N. A. Hawker and Y. Ventikos, "Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study," Journal of Fluid Mechanics, vol. 701, pp 59-97, 2012. https://doi.org/10.1017/jfm.2012.132
  2. W. F. Adler and D. J. Mihora, "Infrared-transmitting win-dow survivability in hydrometeor environ-ments," International Society for Optics and Photonics, vol. 1760, pp. 291-303, 1992.
  3. J. E. Field, C. R. Seward, C. S. Pickles, E. J. Coad, and M. Watt, "Studies of Rain Erosion Mechanisms in a Range of IR Transmitting Ceramics-Including Coated Samples," CAMBRIDGE UNIV. CAVENDISH LAB, United kingdom, 1994.
  4. S. S. Hong, D. J. Kim, and J. H. Kim, "Model-Fluid Full-Speed Test of a Turbopump for a 75 Ton Class Rocket Engine", Journal of Aerospace System Engineering, vol. 7, no. 4, pp. 49-54, 2013.
  5. M. R. Baer and J. W. Nunziato, "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reac-tive granular materials," International Journal of Multiphase Flow, vol. 12, no. 6, pp. 861-889, 1986. https://doi.org/10.1016/0301-9322(86)90033-9
  6. J. J. Quirk and S. Karni, "On the dynamics of a shock-bubble interaction," Journal of Fluid Mechanics, vol. 318, pp. 129-163, 1996. https://doi.org/10.1017/S0022112096007069
  7. H. Terashima and G. Tryggvason, "A front-tracking/ghost-fluid method for fluid interfaces in compressible flows," Journal of Computational Physics, vol. 228, no. 11, pp. 4012-4037, 2009. https://doi.org/10.1016/j.jcp.2009.02.023
  8. G. S. Yeom and K. S. Chang, "A modified HLLC-type Riemann solver for the compressible six-equation two-fluid model," Computers & Fluids, vol. 76, pp. 86-104, 2013. https://doi.org/10.1016/j.compfluid.2013.01.021
  9. A. Daramizadeh and M. R. Ansari, "Numerical simulation of underwater explosion near air-water free surface using a five-equation reduced model," Ocean Engineering, vol. 110, pp. 25-35, 2015. https://doi.org/10.1016/j.oceaneng.2015.10.003
  10. M. Wang, T. Si, and X. Luo, "Experimental study on the interaction of planar shock wave with polygonal helium cylinders," Shock Waves, vol. 25, no. 4, pp. 347-355, 2015. https://doi.org/10.1007/s00193-014-0528-1
  11. O. Haimovich and S. H. Frankel, "Numerical simulations of compressible multicomponent and multiphase flow using a high-order targeted ENO (TENO) finite-volume method," Computers & Fluids, vol. 146, pp. 105-116, 2017. https://doi.org/10.1016/j.compfluid.2017.01.012
  12. R. Saurel and R. Abgrall, "A multiphase Godunov method for compressible multifluid and multiphase flows," Journal of Computational Physics, vol. 150, no. 2, pp. 425-467, 1999. https://doi.org/10.1006/jcph.1999.6187
  13. S. H. Yoon, C. A. Kim, and K. H. Kim, "Multi-dimensional limiting process for three-dimensional flow physics analyses," Journal of Computational Physics, vol. 227, no. 12, pp. 6001-6043, 2008. https://doi.org/10.1016/j.jcp.2008.02.012
  14. R. Abgrall, "How to prevent pressure oscillations in multi-component flow calculations: a quasi conservative approach," Journal of Computational Physics, vol. 125, no. 1, pp. 150-160, 1996. https://doi.org/10.1006/jcph.1996.0085
  15. J. F. Haas and B. Sturtevant, "Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities," Journal of Fluid Mechanics, vol. 181, pp. 41-76, 1987. https://doi.org/10.1017/S0022112087002003