DOI QR코드

DOI QR Code

화학 용액 증착법으로 제조한 Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) 박막의 구조와 전기적 특성

Structural and Electrical Properties of Bi0.9A0.1Fe0.975Zn0.025O3-δ (A=Eu, Dy) BiFeO3 Thin Films by Chemical Solution Deposition

  • 김윤장 (청운대학교 전자공학과) ;
  • 김진원 ((주) 아이비머티리얼즈) ;
  • 장성근 (청운대학교 전자공학과)
  • 투고 : 2018.01.13
  • 심사 : 2018.02.13
  • 발행 : 2018.05.01

초록

Pure $BiFeO_3$ (BFO) and codoped $Bi_{0.9}A_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (A=Eu, Dy) thin films were prepared on Pt(111)/Ti/$SiO_2$/Si(100) substrates by chemical solution deposition. The remnant polarizations (2Pr) of the $Bi_{0.9}Eu_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BEFZO) and $Bi_{0.9}Dy_{0.1}Fe_{0.975}Zn_{0.025}O_{3-{\delta}}$ (BDFZO) thin films were about 36 and $26{\mu}C/cm^2$ at the maximum electric fields of 900 and 917 kV/cm, respectively, at 1 kHz. The codoped BEFZO and BDFZO thin films showed improved electrical properties, and leakage current densities of 3.68 and $1.21{\times}10^{-6}A/cm^2$, respectively, which were three orders of magnitude lower than that of the pure BFO film, at 100 kV/cm.

키워드

참고문헌

  1. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter., 17, R803 (2005). [DOI: https://doi.org/10.1088/0953-8984/17/30/R01]
  2. S. M. Selbach, T. Tybell, M. A. Einarsrud, and T. Grande, Adv. Mater., 20, 3692 (2008). [DOI: https://doi.org/10.1002/adma.200800218]
  3. T. Zhao, A. Scholl. F. Zavaliche. K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mater., 5, 823 (2006). [DOI: https://doi.org/10.1038/nmat1731]
  4. L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng., 68, 89 (2010). [DOI: https://doi.org/10.1016/j.mser.2010.03.001]
  5. D. K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R. S. Katiyar, J. Appl. Phys., 106, 024102 (2009). [DOI: https://doi.org/10.1063/1.3158121]
  6. Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang, and X. Zhao, J. Phys. D: Appl. Phys., 42, 185010 (2009). [DOI: https://doi.org/10.1088/0022-3727/42/18/185010]
  7. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and X. Zhao, J. Phys. D: Appl. Phys., 41, 065003 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/6/065003]
  8. B. Yu, M. Li, J. Wang, L. Pei, D. Guo, and X. Zhao, J. Phys. D: Apply. Phys., 41, 185401 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/18/185401]
  9. T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura, and A. Morimoto, Jpn. J. Appl. Phys., 47, 7586 (2008). [DOI: https://doi.org/10.1143/jjap.47.7586]
  10. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 062903 (2005). [DOI: https://doi.org/10.1063/1.1862336]
  11. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., A32, 751 (1976). [DOI: https://doi.org/10.1107/s0567739476001551]
  12. Y. J. Kim, J. W. Kim. H. J. Kim, and S. S. Kim, J. Korean Phys. Soc., 62, 1019 (2013). [DOI: https://doi.org/10.3938/jkps.62.1019]
  13. C. M. Raghavan, J. W. Kim, and S. S. Kim, Ceram. Int., 40, 2281 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.07.148]
  14. I. Vrejoiu, G. L. Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gosele, Adv. Mater., 18, 1657 (2006). [DOI: https://doi.org/10.1002/adma.200502711]
  15. Z. Zhong and H. Ishiwara, Appl. Phys. Lett., 95, 112902 (2009). [DOI: https://doi.org/10.1063/1.3231073]