DOI QR코드

DOI QR Code

The Electrical Properties of Post-Annealing in Neutron-Irradiated 4H-SiC MOSFETs

중성자 조사한 4H-SiC MOSFET의 열처리에 의한 전기적 특성 변화

  • Lee, Taeseop (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • An, Jae-In (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, So-Mang (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Park, Sung-Joon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Cho, Seulki (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Choo, Kee-Nam (Korea Atomic Energy Research Institute) ;
  • Cho, Man-Soon (Korea Atomic Energy Research Institute) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이태섭 (광운대학교 전자재료공학과) ;
  • 안재인 (광운대학교 전자재료공학과) ;
  • 김소망 (광운대학교 전자재료공학과) ;
  • 박성준 (광운대학교 전자재료공학과) ;
  • 조슬기 (광운대학교 전자재료공학과) ;
  • 주기남 (한국원자력연구원) ;
  • 조만순 (한국원자력연구원) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2018.01.18
  • Accepted : 2018.02.21
  • Published : 2018.05.01

Abstract

In this work, we have investigated the effect of a 30-min thermal anneal at $550^{\circ}C$ on the electrical characteristics of neutron-irradiated 4H-SiC MOSFETs. Thermal annealing can recover the on/off characteristics of neutron-irradiated 4H-SiC MOSFETs. After thermal annealing, the interface-trap density decreased and the effective mobility increased in terms of the on-characteristics. This finding could be due to the improvement of the interfacial state from thermal annealing and the reduction in Coulomb scattering due to the reduction in interface traps. Additionally, in terms of the off-characteristics, the thermal annealing resulted in the recovery of the breakdown voltage and leakage current. After the thermal annealing, the number of positive trapped charges at the MOSFET interface was decreased.

Keywords

References

  1. A. Saha and J. A. Cooper, IEEE Trans. Electron Dev., 54, 2786 (2007). [DOI: https://doi.org/10.1109/ted.2007.904577]
  2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363 (1994). [DOI: https://doi.org/10.1063/1.358463]
  3. L. A. Franks, B. A. Brunett, R. W. Olsen, D. S. Walsh, G. Vizkelethy, J. I. Trombka, B. L. Doyle, and P. B. James, Nucl. Instrum. Methods Phys. Res., Sect. A, 428, 95 (1999). [DOI: https://doi.org/10.1016/S0168-9002(98)01585-X]
  4. R. C. Baumann, IEEE Trans. Device Mater. Reliab., 5, 305 (2005). [DOI: https://doi.org/10.1109/tdmr.2005.853449]
  5. N. Seifert, B. Gill, K. Foley, and P. Relangi, Proc. 2008 IEEE International Reliability Physics Symposium (IEEE, Phoenix, USA, 2008) p. 181.
  6. T. R. Oldham and F. B. McLean, IEEE Trans. Nucl. Sci., 50, 483 (2003). [DOI: https://doi.org/10.1109/tns.2003.812927]
  7. T. Heijmen, P. Roche, G. Gasiot, and K. R. Forbes, IEEE Trans. Device Mater. Reliab., 7, 84 (2007). [DOI: http://doi.org/10.1109/TDMR.2007.897517]
  8. P. Jayavel, K. Santhakumar, and J. Kumar, Phys. B, 315, 88 (2002). [DOI: https://doi.org/10.1016/s0921-4526(01)01104-8]
  9. B. M. Wilamowski, Solid-State Electron., 26, 491 (1983). [DOI: https://doi.org/10.1016/0038-1101(83)90106-5]
  10. B. J. Baliga, IEEE Electron Device Lett., 5, 194 (1984). [DOI: https://doi.org/10.1109/edl.1984.25884]
  11. J. Vig and J. LeBus, IEEE Trans. Parts, Hybrids, Packag., 12, 365 (1976). [DOI: https://doi.org/10.1109/tphp.1976.1135156]
  12. Y. Suzue, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys., 44, 561 (2005). [DOI: https://doi.org/10.1143/jjap.44.561]
  13. M. Tominaga, N. Hirata, and I. Taniguchi, Electrochem. Commun., 7, 1423 (2005). [DOI: https://doi.org/10.1016/j.elecom.2005.09.025]