DOI QR코드

DOI QR Code

다중 패치 쉘 아이소 지오메트릭 해석의 계면 연속성 검토

Studies of Interface Continuity in Isogeometric Structural Analysis for Multi-patch Shell Components

  • 하윤도 (군산대학교 조선해양공학과) ;
  • 노정민 (군산대학교 조선해양공학과)
  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National University) ;
  • Noh, Jungmin (Department of Naval Architecture and Ocean Engineering, Kunsan National University)
  • 투고 : 2018.01.03
  • 심사 : 2018.02.08
  • 발행 : 2018.04.30

초록

본 연구에서는 NURBS 기반 아이소 지오메트릭 쉘 해석을 위해 다중 패치 해석 모델을 정식화하였다. 기존 연구를 통해 개발된 단일 패치로 구성된 전단 변형을 고려한 쉘 요소에 대해 일반 좌표계에서 기하학적으로 엄밀한 쉘 구조물의 아이소 지오메트릭 해석 모델을 도입하고 매개변수 연속성을 고려하여 다중 패치 모델로 확장하였다. 인접 곡면의 노트 요소가 결합 경계를 통해 조화를 이루는 경우에 대해 0차와 1차 매개변수 연속성 조건을 고려하였으며, 두 패치 간 마스터-슬레이브 관계를 정립하여 종속된 한 곡면의 자유도를 상대 곡면의 자유도로 표시하여 모델 크기를 줄이면서 두 곡면을 결합하였다. 다중 패치 쉘 예제에 대해 0차와 1차 연속성 조건을 각각 적용하여 구조해석을 수행하여 1차 연속성 조건의 주요한 특성들을 확인하였다. 또한 각 연속성 조건에 대한 해의 수렴 특성을 검토하였으며 결합 경계에서의 두 패치의 연속성을 확인하였다.

This paper presents the assembling of multiple patches based on the single patch isogeometric formulation for the shear deformable shell element given in the previous study. The geometrically exact shell formulation has been accomplished with the shell theory based formulation and the generalized curvilinear coordinate system directly derived from the given NURBS geometry. For the knot elements matching across adjacent surfaces, the zero-th and first parametric continuity conditions are considered and the corresponding coupling constraints are implemented by a master-slave formulation between adjacent patches. The constraints are then enforced by a substitution method for condensation of the slave variables, thereby reducing the model size. Through numerical investigations, the important features of the first parametric continuity condition are confirmed. The performance of the multi-patch shell models is also examined comparing the rate of convergence of response coefficients for the zero and first order continuity conditions and continuity in coupling boundary between two patches is confirmed.

키워드

참고문헌

  1. Ahmad, S., Orons, B.M., Zienkiewicz, O.C. (1970) Analysis of Thick and Thin Shell Structures by Curved Finite Elements, Int. J. Numer. Meth. Eng., 2, pp. 419-451. https://doi.org/10.1002/nme.1620020310
  2. Benson, D.J., Bazileves, Y., Hsu, M.C., Hughes, T.J.R. (2010) Isogeometric Shell Analysis: The Reissner-Mindlin Shell, Comput. Methods Appl. Mech. & Eng., 199(5-8), pp.276-289. https://doi.org/10.1016/j.cma.2009.05.011
  3. Bouclier, R., Elguedj, T., Combescure, A. (2013) Efficient Isogeometric NURBS-based Solid-Shell Element: Mixed Formulation and B-method, Comput. Methods Appl. Mech. & Eng., 267, pp.86-110. https://doi.org/10.1016/j.cma.2013.08.002
  4. Cottrell, J.A., Hughes, T.J.R., Reali, A. (2007) Studies of Refinement and Continuity in Isogeometric Structural Analysis, Comput. Methods Appl. Mech. & Eng., 196(41-44), pp.4160-4183. https://doi.org/10.1016/j.cma.2007.04.007
  5. Echter, R., Oesterle, B., Bischoff, M. (2013) A Hierarchic Family of Isogeometric Shell Finite Elements, Comput. Methods Appl. Mech. & Eng., 254, pp.170-180. https://doi.org/10.1016/j.cma.2012.10.018
  6. Hosseini, S., Remmers, J.J.C., Verhoosel, C. V., Borst, R. (2014) An Isogeometric Continuum Shell Element For Non-linear Analysis, Comput. Methods Appl. Mech. & Eng., 271, pp.1-22. https://doi.org/10.1016/j.cma.2013.11.023
  7. Hughes, T.J.R., Cottrell, J.A., Bazileves, Y. (2005) Isogeometric Analysis: CAD, Finite Element, NURBS, Exact Geometry and Mesh Refinement, Comput. Methods Appl. Mech. & Eng., 194(39-41), pp.4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  8. Ha, Y.D. (2015) Generalized Isogeometric Shape Sensitivity Analysis in Curvilinear Coordinate System and Shape Optimization of Shell Structures, Struct. & Multidiscip. Optim., 52(6), pp.1069-1088. https://doi.org/10.1007/s00158-015-1297-x
  9. Kiendl, J., Bletzinger, K.-U., Linhard, J., Wuchner, R. (2009) Isogeometric Shell Analysis with Kirchhoff-Love Elements, Comput. Methods Appl. Mech. & Eng., 198(49-52), pp.3902-3914. https://doi.org/10.1016/j.cma.2009.08.013
  10. Lei, Z., Gillot, F., Jezequel, L. (2015) A $C^0/C^1$ Multiple Patches Connection Method in Isogeometric Analysis, Appl. Math. Model., 39(15), pp.4405-4420. https://doi.org/10.1016/j.apm.2014.12.055
  11. Nguyen, V., Kerfridenu, P., Brino, M., Bordas, S., Bonisoli, E. (2015) Nitsche's Method for Two and Three Dimensional NURBS Patch Coupling, Comput. Mech., 53(6), pp.1163-1182. https://doi.org/10.1007/s00466-013-0955-3
  12. Simo, J.C., Fox, D.D. (1989) On a Stress Resultant Geometrically Exact Shell Model. Part I: Formulation and Optimal Parametrization, Comput. Methods Appl. Mech. & Eng., 72(3), pp.267-304. https://doi.org/10.1016/0045-7825(89)90002-9