DOI QR코드

DOI QR Code

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI

  • Zheng, Jun (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Sun, Dongsong (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Chen, Tingdi (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Zhao, Ruocan (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Han, Yuli (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Li, Zimu (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Zhou, Anran (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China) ;
  • Zhang, Nannan (CAS Key Laboratory of Geospace Environment, University of Science and Technology of China)
  • Received : 2017.12.08
  • Accepted : 2018.03.27
  • Published : 2018.04.25

Abstract

A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.

Keywords

References

  1. G. Baumgarten, "Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km," Atmos. Meas. Tech. 3, 1509-1518 (2010). https://doi.org/10.5194/amt-3-1509-2010
  2. K. Salonen, G. Haase, R. Eresmaa, H. Hohtia, and H. Jarvinena, "Towards the operational use of Doppler radar radial winds in HIRLAM," Atmos. Res. 10, 190-200 (2011).
  3. D. Fritts, "Gravity wave saturation in the middle atmosphere: A review of theory and observations," Rev. Geophys. Space Phys. 22, 275-308 (1984). https://doi.org/10.1029/RG022i003p00275
  4. W. Baker, R. Atlas, C. Cardinali, A. Clement, G. Emmitt, B. Gentry, R. Hardesty, E. Källén, M. Kavaya, R. Langland, Z. Ma, M. Masutani, W. McCarty, R. Pierce, Z. Pu, L. Riishojgaard, J. Ryan, S. Tucker, M. Weissmann, and J. Yoe, "Lidar measured wind profiles: the missing link in the global observing system," Am. Meteorol. Soc. 10, 543-564 (2014).
  5. C. L. Korb, B. M. Gentry, and C. Y. Weng, "Edge technique: theory and application to the lidar measurement of atmospheric wind," Appl. Opt. 31, 4202-4213 (1992). https://doi.org/10.1364/AO.31.004202
  6. B. M. Gentry and C. L. Korb, "Edge technique for high-accuracy Doppler velocimetry," Appl. Opt. 33, 5770-5777 (1994). https://doi.org/10.1364/AO.33.005770
  7. C. L. Korb, B. M. Gentry, and S. X. Li, "Edge technique Doppler lidar wind measurements with high vertical resolution," Appl. Opt. 36, 5976-5983 (1997). https://doi.org/10.1364/AO.36.005976
  8. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, "Theory of the double-edge technique for Doppler lidar wind measurement," Appl. Opt. 37, 3097-3104 (1998). https://doi.org/10.1364/AO.37.003097
  9. C. L. Korb, B. M. Gentry, S. X. Li, and C. Flesia, "Theory of the double-edge molecular technique for Doppler lidar wind measurement," Appl. Opt. 38, 432-440 (1999). https://doi.org/10.1364/AO.38.000432
  10. C. Flesia, C. L. Korb, and C. Hirt, "Double-edge molecular measurement of lidar wind profiles at 355 nm," Opt. Lett. 25, 1466-1468 (2000). https://doi.org/10.1364/OL.25.001466
  11. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989). https://doi.org/10.1029/GL016i011p01273
  12. A. Garnier and M. L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992). https://doi.org/10.1007/BF00348610
  13. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999). https://doi.org/10.1364/AO.38.002410
  14. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999). https://doi.org/10.1364/AO.38.002422
  15. C. Tepley, S. Sargoytchev, and C. Hines, "Initial Doppler Rayleigh lidar results from Arecibo," Geophys. Res. Lett. 18, 167-170 (1991). https://doi.org/10.1029/90GL02670
  16. C. A. Tepley, S. I. Sargoytchev, and R. Rojas, "The Doppler Rayleigh lidar system at Arecibo," IEEE Trans. Geosci. Remote Sens. 31, 36-47 (1993). https://doi.org/10.1109/36.210442
  17. C. Tepley, "Neutral winds of the middle atmosphere observed at Arecibo using a Doppler Rayleigh lidar," J. Geophys. Res. 99, 25781-25790 (1994). https://doi.org/10.1029/94JD02213
  18. B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355-nm molecular Doppler lidar," Opt. Lett. 25, 1231- 1233 (2000). https://doi.org/10.1364/OL.25.001231
  19. D. Rees, M. Vyssogorets, N. P. Meredith, E. Griffin, and Y. Chaxell, "The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results," J. Atmos. Sol. Terr. Phys. 58, 1827-1842 (1996). https://doi.org/10.1016/0021-9169(95)00174-3
  20. U. von Zahn, G. von Cossart, J. Fiedler, K. H. Fricke, G. Nelke, G. Baumgarten, D. Rees, A. Hauchecorne, and K. Adolfsen, "The ALOMAR Rayleigh/Mie/Raman lidar: Objectives, configuration, and performance," Ann. Geophys. 18, 815-833 (2000). https://doi.org/10.1007/s00585-000-0815-2
  21. A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The atmospheric dynamics mission for global wind field measurement," Bull. Am. Meteorol. Soc. 86, 73-87 (2005). https://doi.org/10.1175/BAMS-86-1-73
  22. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, "The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument," J. Atmos. Ocean. Technol. 26, 2501-2515 (2009). https://doi.org/10.1175/2009JTECHA1309.1
  23. U. Paffrath, C. Lemmerz, O. Reitebuch, B. Witschas, I. Nikolaus, and V. Freudenthaler, "The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric performance," J. Atmos. Ocean. Technol. 26, 2516-2530 (2009). https://doi.org/10.1175/2009JTECHA1314.1
  24. F. Shen, H. Cha, J. Dong, D. Kim, D. Sun, and S. O. Kwon, "Design and performance simulation of a molecular Doppler wind lidar," Chin. Opt. Lett. 7, 593-597 (2009). https://doi.org/10.3788/COL20090707.0593
  25. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, "Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method," Opt. Express 20, 15286-15300 (2012). https://doi.org/10.1364/OE.20.015286
  26. Y. Han, X. Dou, D. Sun, H. Xia, Z. Shu, "Analysis on wind retrieval methods for Rayleigh Doppler lidar," Opt. Eng. 53, 061607 (2014).
  27. X. Dou, Y. Han, D. Sun, H. Xia, Z. Shu, R. Zhao, M. Shangguan, and J. Guo, "Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere," Opt. Express 22, A1203-A1221 (2014). https://doi.org/10.1364/OE.22.0A1203
  28. R. Zhao, X. Dou, D. Sun, X. Xue, J. Zheng, Y. Han, T. Chen, G. Wang, and Y. Zhou, "Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar," Opt. Express 24, A581-A591 (2016). https://doi.org/10.1364/OE.24.00A581