DOI QR코드

DOI QR Code

Development of the Analytical Method for Diazepam in Fishery Products using Liquid and Gas Chromatography-tandem Mass Spectrometry

LC-MS/MS 및 GC-MS/MS를 활용한 수산물 중 디아제팜의 정량분석법 개발

  • Shin, Dasom (Pesticide and Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation) ;
  • Kang, Hui-Seung (Pesticide and Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation) ;
  • Kim, Joohye (Pesticide and Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation) ;
  • Jeong, Jiyoon (Pesticide and Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation) ;
  • Rhee, Gyu-Seek (Pesticide and Veterinary Drug Residues Division, National Institute of Food & Drug Safety Evaluation)
  • 신다솜 (식품의약품안전처 식품의약품안전평가원 식품위해평가부 잔류물질과) ;
  • 강희승 (식품의약품안전처 식품의약품안전평가원 식품위해평가부 잔류물질과) ;
  • 김주혜 (식품의약품안전처 식품의약품안전평가원 식품위해평가부 잔류물질과) ;
  • 정지윤 (식품의약품안전처 식품의약품안전평가원 식품위해평가부 잔류물질과) ;
  • 이규식 (식품의약품안전처 식품의약품안전평가원 식품위해평가부 잔류물질과)
  • Received : 2017.10.16
  • Accepted : 2018.02.20
  • Published : 2018.04.30

Abstract

The aim of this study was to develop an analytical method for the quantification of diazepam residues in fishery products, using liquid and gas chromatography-tandem mass spectrometry (LC-MS/MS and GC-MS/MS). The sample utilized in the study was extracted from the fish sample (crucian carp) using 0.1% formic acid in acetonitrile. For the utilization of the purification process, the dispersive solid phase extraction (dSPE) was used for LC-MS/MS, dSPE and SPE was used for GC-MS/MS, respectively. To be sure, the standard calibration curves showed a good linearity as the noted correlation coefficients, $r^2$ was > 0.99. The average recoveries for accuracy ranged in 99.8~124% for the samples which were fortified at three different levels (0.001, 0.002 and 0.010 mg/kg). The correlation coefficient for the precision effect was measured at a range of 4.01~11.8%. The limit of detection (LOD) for the diazepam analysis was 0.0004 mg/kg, and the limit of the quantification (LOQ) was 0.001 mg/kg. The proposed analytical method was characterized with a high accuracy and acceptable sensitivity to meet the established Codex Alimentarius Commission (CAC/GL71-2009) guideline requirements. We therefore established the optimal analysis method for the determination of diazepam in the fishery products using LC-MS/MS and GC-MS/MS. It would be applicable to analyze the diazepam residues in fishery products in further studies on this subject.

본 연구는 국내 생산 및 수입 양식 수산물에 대해 잔류할 수 있는 향정신성 의약품인 디아제팜 대한 안전관리강화기반을 위해 마련되었다. 중국인민공화국 국가 표준시험법(GB 29697-2013)을 기반으로 전처리 방법을 개선하여 GC-MS/MS 시험법을 확립하였으며, LC-MS/MS 방법과의 기기간 검증을 통해 확립된 시험법의 선택성, 정량한계 및 회수율에 대한 검증을 통해 디아제팜 시험법으로서의 유효성을 확인하였다. LC-MS/MS의 경우 아세토니트릴로 추출 후 PSA를 이용해 정제하였고, GC-MS/MS의 경우 아세토니트릴로 추출후 $C_{18}$카트리지를 이용해 정제하였다. 디아제팜은 표준용액을 정량한계를 포함한 농도에 따라 검량선을 작성한 결과 두 기기 모두 $r^2$> 0.99 이상의 직선성을 확인하였다. 본 실험에서의 검출한계와 정량한계는 LC-MS/MS 및 GC-MS/MS 모두 0.0004 mg/kg, 0.001 mg/kg 수준이었으며, 평균 회수율은 각각 99.8~106%, 109~124%이었다. 또한, 분석오차는 모두 15% 이하로 정확성 및 재현성이 우수하였으며, CODEX 가이드라인 규정에 만족하는 수준이었다. 따라서 개발된 시험법은 안전한 수산물의 국내 유통과 잔류실태조사를 위해 활용될 것으로 기대한다.

Keywords

References

  1. Page, C., Michael, C., Sutter, M., Walker, M., Hoffman, B.: Integrated Pharmacology. vol. 2. C.V. Mosby (2002).
  2. Mottaleb M.A., Stowe C., Johnson D. R., Meziani M.J., Mottaleb M. A.: Pharmaceuticals in grocery market fish fillets by gas chromatography-mass spectrometry. Food Chem., 190, 529-536 (2016). https://doi.org/10.1016/j.foodchem.2015.06.003
  3. Abreu, M., Koakoski, G.: Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One, 9: e 103232 (2014). https://doi.org/10.1371/journal.pone.0103232
  4. Chinese National Standard: Determination of Diazepam and Methaqualone residue in animal derived food by Gas chromatography-Mass Spectrometric method. GB 29697-2013 (2014).
  5. Miller, T.H., McEneff, G.L., Brown, R.J., Bury, N.R., Barron, P.L.: Pharmaceuticals in the freshwater invertebrate, Gammarus pulex, determined using pulverized liquid extraction, solid phase extraction and liquid chromatography-tandem mass spectrometry. Sci. Total Environ., 511, 153-160 (2015). https://doi.org/10.1016/j.scitotenv.2014.12.034
  6. Jouvel, C., Maciejewski, P., Garcia, P., Bonnaire, Y., Horning, S., Popot, M.: Detection of diazepam in horse hair samples by mass spectrometric methods. Analyst, 125, 1765-1769 (2000). https://doi.org/10.1039/b003418p
  7. Liu, Z., Short, J., Rose, A., Ren, S., Contel, N., Grossaman, S.: The stimultaneous determination of diazepam and its three metabolites in dog plasma by high-performance liquid chromatography with mass spectroscopy detection. J. Pharm. Biomed. Anal., 26, 321-330 (2001). https://doi.org/10.1016/S0731-7085(01)00404-6
  8. Mottaleb, M.A., Bellamy, M.K., Mottaleb, M.A., Islam, M.R.: Use of LC-MS and GC-MS Methods to measure emerging contaminants pharmaceutical and personal care products (PPCPs) in fish. J. Chromatogr., 6, 267 (2015).
  9. Masia, A., Suarez-Varela, M.M., Llopis-Gonzalez, A., Pico, Y.,: Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry. A Review. Anal. Chim. Acta, 936, 40-61 (2016). https://doi.org/10.1016/j.aca.2016.07.023
  10. Petrovi , M., Hernando, M.D., Diaz-Cruz, M.S., Barcelo, D.: Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples. A Review. J. Chromatogr. A, 1067, 1-14 (2005). https://doi.org/10.1016/j.chroma.2004.10.110
  11. Diaz-Cruz, M., Barcelo, S.D.: Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem., 386, 973-985 (2006). https://doi.org/10.1007/s00216-006-0444-z
  12. Li, J., Zhang, J., Liu, H., Wu, L.: A comparative study of primary secondary amino (PSA) and multi-walled carbon nanotubes (MWCNTs) as QuEChERS absorbents for the rapid determination of diazepam and its major metabolites in fish sample by high-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry. J. Sci. Food Agric., 96, 555-560 (2016). https://doi.org/10.1002/jsfa.7123
  13. Baron, M.G., Mintram, K.S., Owen, S.F., Hetheridge, M.J., Moody, A.J., Purcell, W.M., Jackson, S.K., Jha, A.N.: Pharmaceutical metabolism in fish: Using a 3-D hepatic in vitro model to assess clearance. PLoS ONE, 12(1), (2017).
  14. Zhao, L., Lucas, D.: Multi residue analysis of veterinary drugs in bovine liver by lc-ms/ms. Aglient Tech. Inc., (2015).
  15. CODEX Alimentarius Commission. Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals, CAC/GL 71 (2009).
  16. Kang H.S., Lee S.B., Shin D.S., Jeong J.Y., Hong J.H., Rhee G.S.: Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control, 85, 57-65 (2018). https://doi.org/10.1016/j.foodcont.2017.09.019
  17. Lopez-Garcia E., Mastroianni N., Postigo C., Valcarcel Y., Gonzalez-Alonso S., Barcelo D., Lopez de Alda M.: Simultaneous LC-MS/MS determination of 40 legal and illegal psychoactive drugs in breast and bovine milk. Food Chem., 245, 159-167 (2018). https://doi.org/10.1016/j.foodchem.2017.10.005
  18. Boeck M.D., Missotten S., Dehaen W., Tytgat J., Cuypers E.: Development and validation of a fast ionic liquid-based dispersive liquid-liquid microextraction procedure combined with LC-MS/MS analysis for the quantification of benzodiazepines and benzodiazepine-like hypnotics in whole blood. Forensic Sci. Int., 274, 44-54 (2017).