DOI QR코드

DOI QR Code

Distribution Patterns of Benthic Macroinvertebrates in Streams of Korea

우리나라 주요 하천 수계에서 저서성 대형무척추동물의 분포 특성

  • Kwak, Ihn-Sil (Department of Fisheries and Ocean Science, Chonnam National University) ;
  • Lee, Dae-Seong (Department of Biology, Kyung Hee University) ;
  • Hong, Cheol (Department of Fisheries and Ocean Science, Chonnam National University) ;
  • Park, Young-Seuk (Department of Biology, Kyung Hee University)
  • 곽인실 (전남대학교 환경해양학전공) ;
  • 이대성 (경희대학교 생물학과) ;
  • 홍철 (전남대학교 환경해양학전공) ;
  • 박영석 (경희대학교 생물학과)
  • Received : 2018.01.05
  • Accepted : 2018.03.11
  • Published : 2018.03.31

Abstract

The distribution of benthic macroinvertebrates was investigated at 1,157 sites of 7 main water systems in Korea, including 442 sites of Han River system (Namhan River, Bukhan River, Han River main stream, Anseongcheon, etc.), 305 sites of Nakdong River system (Nakdong River, Hyeongsan River, Taehwa River, etc.), 199 sites of Geum River system (Geum River, Sapgyocheon, Mangyeong River, Dongjin River, etc.) 102 sites of Seomjin River system (Seomjin River), 102 sites of Yeongsan River system (Yeongsan River, Tamjin River, etc.), and 7 sites of Jeju stream system. A total of 151 families were found in the whole survey sites, including 141 families in Han River, 122 in Nakdong River, 115 in Geum River, 106 in Seomjin River, 113 in Yeongsan River, and 50 in Jeju. Chironomidae (20.8%) was the most dominant species in Korea, followed by Hydropsychidae (17.1%), Baetidae (12.6%), Tubificidae (10.3%), Heptageniidae (8.6%), Ephemerellidae (6.3%), Asellidae (2.7%), Leptophlebiidae (2.4%), Planariidae (1.7%), and Tipulidae (1.6%). Substrates compositions consisted of large sand (22.6%), large gravel (18.4%), silt (10.5%), and boulder (8.2%). The mean stream width was 133.5 m and the mean watercourse width was 61.7 m. The mean water depth and velocity were 30.2 cm and $33.1cm\;s^{-1}$, respectively. Results of cluster analysis based on distributional characteristics of benthic macroinvertebrates were divided into six groups according to the frequency of benthic macroinvertebrate taxa which appeared in the study area. Finally, altitude, current velocity and substrate composition were the most influencial factors determining the distribution patterns of macroinvertebrate communities.

주요 수계를 중심으로 한강 수계 (남한강, 북한강, 한강본류, 안성천, 기타) 442지점, 낙동강 수계 (낙동강, 형산강, 태화강, 기타) 305지점, 금강 수계 (금강, 삽교천, 만경강, 동진강, 기타) 199지점, 섬진강 수계 (섬진강, 기타) 102지점, 영산강 수계 (영산강, 탐진강, 기타) 102개 그리고 제주 수계 7개를 합쳐 총 1,157지점에 대하여 저서성 대형무척추동물의 분포현황을 정리하여 데이터화하였다. 전체 조사지점에서 한강 141과, 낙동강 122과, 금강 115과, 섬진강 106과, 영산강 113과 그리고 제주 수계에서 50과 조사되어, 총 151과가 출현한 것으로 나타났다. 저서성 대형무척추동물의 출현을 살펴보면, 깔다구과가 가장 우점하여 20.8%를 차지하였으며, 줄날도래과는 17.1%, 꼬마하루살이과는 12.6%, 실지렁이과는 10.3%, 납작하루살이과는 8.6%, 알락하루살이과는 6.3%, 물벌레과는 2.7%, 갈래하루살이과는 2.4%, 플라나리아과는 1.7%, 그리고 각다귀과는 1.6%를 차지하였다. 저서성 대형무척추동물이 서식하는 하상은 모래 (22.6%), 자갈 (21.4%), 굵은 모래 (19.0%), 큰 자갈 (18.4%), 진흙 이하 (10.5%)와 큰 돌 (8.2%)로 이루어졌다. 수계의 평균 하폭은 133.5 m, 수폭은 61.7 m로 조사되었다. 수계의 평균 수심과 유속은 각각 30.2 cm, $33.1cm\;s^{-1}$이었다. 수계에 분포하는 저서성 대형무척추동물의 분포특징을 집괴분석으로 살펴본 결과 조사지에 출현한 저서성 대형 무척추동물의 분류군의 출현빈도에 따라 6그룹으로 나뉘어졌다. 이는 조사지역의 고도, 유속, 및 하상구성 특성과 밀접한 관계를 가지고 있었다.

Keywords

References

  1. Bae, M.J. and Y.S. Park. 2009. Changes in benthic macroinvertebrate communities in response to natural disturbances in a stream. Journal of Ecology and Environment 32(3): 197-206. https://doi.org/10.5141/JEFB.2009.32.3.197
  2. Bae, M.J., F. Li, Y.S. Kwon, N. Chung, H. Choi, S.J. Hwang and Y.S. Park. 2014. Concordance of diatom, macroinvertebrate and fish assemblages in streams at nested spatial scales: Implications for ecological integrity. Ecological Indicators 47: 89-101. https://doi.org/10.1016/j.ecolind.2014.07.030
  3. Bae, M.J., T.S. Chon, and Y.S. Park. 2014. Characterizing differential responses of benthic macroinvertebrate communities to floods and droughts in three different stream types using a Self-Organizing Map. Ecohydrology 7(1): 115-126. https://doi.org/10.1002/eco.1326
  4. Bae, M.J., Y.S. Kwon, S.J. Hwang, T.S. Chon, H.J. Yang, I.S. Kwak, J.H. Park, S.A. Ham and Y.S. Park. 2011. Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Annales de Limnologie-International Journal of Limnology 47: S91-S105. https://doi.org/10.1051/limn/2011022
  5. Baldi, A. 2003. Using higher taxa as surrogates of species richness: a study based on 3700 Coleoptera, Diptera and Acari species in Central-Hungarian reserves. Basic and Applied Ecology 4: 589-593. https://doi.org/10.1078/1439-1791-00193
  6. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
  7. Boulton, A.J., C.G. Peterson, N.B. Grimm and S.G. Fisher. 1992. Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73(6): 2192-2207. https://doi.org/10.2307/1941467
  8. Brooks, S.S. and A.J. Boulton. 1991. Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Australian Journal of Marine and Freshwater Research 42: 295-308. https://doi.org/10.1071/MF9910295
  9. Cardoso, P., I. Silva, N.G. de Oliveira and A.R.M. Serrano. 2004. Higher taxa surrogates of spider (Araneae) diversity and their efficiency in conservation. Biological Conservation 117: 453-459. https://doi.org/10.1016/j.biocon.2003.08.013
  10. Chon, T.S., I.S. Kwak and Y.S. Park. 2000. Pattern recognition of long-term ecological data in community changes by using artificial neural networks: Benthic macroinvertebrates and chironomids in a polluted stream. Korean Journal of Limnological Society 23(2): 89-100.
  11. Cobb, G.G., T.D. Galloway and J.F. Flannagan. 1992. Effects of discharge and substrate stability on density and species composition of stream insects. Canadian Journal of Fisheries and Aquatic Sciences 49: 1788-1795. https://doi.org/10.1139/f92-198
  12. Cossins, A.R. and K. Bowler. 1987. Temperature biology of animals. Chapman and Hall, London.
  13. Flecker, A.S. and B. Feifarek. 1994. Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshwater Biology 31: 131-142. https://doi.org/10.1111/j.1365-2427.1994.tb00847.x
  14. Graeber, d., T.M. Jensen, J. Rasmussen, T. Riis, P. Wiberg-Larsen and A. Baattrup-pedersen. 2017. Multiple stress response of lowland stream benthic macroinvertebrates is dependent on habitat type. Science of the Total Environment 599: 1517-1523.
  15. Gray, L.J. and S.G. Fisher. 1981. Postflood recolonization pathways of macroinvertebrates in a lowland Sonoran Desert stream. American Midland Naturalist 106: 249-257. https://doi.org/10.2307/2425161
  16. Hawkes, H.A. 1998. Origin and development of the biological monitoring working party score system. Water Research 32: 964-968. https://doi.org/10.1016/S0043-1354(97)00275-3
  17. Hilsenhoff, W.L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7(1): 65-68. https://doi.org/10.2307/1467832
  18. Kwak, I.S., G. Liu, Y.S. Park and T.S. Chon. 2000. Community Patterning of Benthic Macroinvertebrates in Streams of South Korea by Utilizing an Artificial Neural Network. Korean Journal of Ecology and Environment 33: 230-243.
  19. Kwon, S.J., Y.C. Jeon and J.H. Park. 2013. Checklist of organisms in Korea 7. Benthic macroinvertebrates. Eco and Nature, Seoul.
  20. Kwon, T.-S., Y.S. Kim, S.W. Lee and Y.-S. Park. 2016. Changes of soil arthropod communities in temperate forests over 10 years (1998-2007). Journal of Asia-Pacific Entomology 19(1): 181-189. https://doi.org/10.1016/j.aspen.2016.01.003
  21. Lancaster, J. and A.G. Hildrew. 1993. Characterizing instream flow refugia. Canadian Journal of Fisheries and Aquatic Sciences 50(8): 1663-1675. https://doi.org/10.1139/f93-187
  22. Li, F., M.J. Bae, Y.S. Kwon, N. Chung, S.J. Hwang, S.J. Park, H.K. Park, D.S. Kong and Y.S. Park. 2013. Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems. Ecological modelling 252: 53-62. https://doi.org/10.1016/j.ecolmodel.2012.09.006
  23. Li, F., N. Chung, M.J. Bae, Y. Kwon and Y.S. Park. 2012. Relationships between stream macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biology 57: 2107-2124. https://doi.org/10.1111/j.1365-2427.2012.02854.x
  24. Li, F., N. Chung, M.J. Bae, Y. Kwon, T.S. Kwon and Y.S. Park. 2013. Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions. Climatic change 119(2): 421-434. https://doi.org/10.1007/s10584-013-0720-9
  25. Li, F., Y.S. Kwon, M.J. Bae, N. Chung, T.S. Kwon and Y.S. Park. 2014. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea. Conservation Biology 28: 498-508. https://doi.org/10.1111/cobi.12219
  26. Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert and K. Hornik. 2017. cluster: Cluster Analysis Basics and Extensions. R package version 2.0. 1. 2015.
  27. Magnuson, J.J., L.B. Crowder and P.A. Medvick. 1979. Temperature as an ecological resource. American Zoologist 19: 331-343. https://doi.org/10.1093/icb/19.1.331
  28. Merritt, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America. 3rd ed. Kendall/ Hunt Publishing Company, Dubuque, Iowa.
  29. MOE/NIER. 2009. The Survey and Evaluation of Aquatic Ecosystem Health in Korea. The Ministry of Environment/National Institute of Environmental Research, Incheon, Korea (in Korean with English summary).
  30. Neil, W.H. 1979. Mechanisms of fish distribution in heterothermal environments. American Zoologist 19: 305-317. https://doi.org/10.1093/icb/19.1.305
  31. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2017. vegan: Community Ecology Package.
  32. Paisley, M.F., D.J. Trigg and W.J. Walley. 2014. Revision of the biological monitoring working party (BMWP) score system: derivation of present-only and abundance-related scores from field data. River research and applications 30(7): 887-904. https://doi.org/10.1002/rra.2686
  33. Park, Y.S., M.Y. Song, Y.C. Park, K.H. Oh, E. Cho and T.S. Chon. 2007. Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecological Modelling 203: 26-33. https://doi.org/10.1016/j.ecolmodel.2006.04.032
  34. Park, Y.-S., Y.-K. Park and H.-M. Yang. 2016. Effects of clearcutting on forest arthropod communities at two different vertical levels (crown and ground surface). Korean Journal of Ecology and Environment 49(4): 271-278. https://doi.org/10.11614/KSL.2016.49.4.271
  35. Piggott, J.J., C.R. Townsend and C.D. Matthaei. 2015. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Global Change Biology 21(5): 1887-1906. https://doi.org/10.1111/gcb.12861
  36. Preston, F.W. 1962. The canonical distribution of commonness and rarity: Part I. Ecology 43: 185-215. https://doi.org/10.2307/1931976
  37. Ricotta, C., M. Ferrari and G. Avena. 2002. Using the scaling behavior of higher taxa for the assessment of species richness. Biological Conservation 107: 131-133. https://doi.org/10.1016/S0006-3207(02)00045-9
  38. Robertson, A.L., J. Lancaster and A.G. Hildrew. 1995. Stream hydraulics and the distribution of macrocrustacea: a role for refugia? Freshwater Biology 33: 469-484. https://doi.org/10.1111/j.1365-2427.1995.tb00407.x
  39. Rosenberg, D.M. and V.H. Resh. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman & Hall, New York, 488pp.
  40. Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.
  41. Scarsbrook M.R. and C.R. Townsend. 1993. Stream community structure in relation to spatial and temporal variation: a habitat templet study of two contrasting New Zealand stream. Freshwater Biology 29: 395-410. https://doi.org/10.1111/j.1365-2427.1993.tb00774.x
  42. Shearer, K.A., J.W. Hayes, I.G. Jowett and D.A. Olsen. 2015. Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine and Freshwater Research 49(2): 178-191. https://doi.org/10.1080/00288330.2014.988632
  43. Tang, H., M.Y. Song, W.S. Cho, Y.S. Park and T.S. Chon. 2010. Species abundance distribution of benthic chironomids and other macroinvertebrates across different levels of pollution in streams. Annales de Limnologie-International Journal of Limnology 46: 53-66. https://doi.org/10.1051/limn/2009031
  44. Vannote, R.L. and B.W. Sweeney. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667-695. https://doi.org/10.1086/283591
  45. Visinskien , G. and R. Bernotien . 2012. The use of benthic macroinvertebrate families for river quality assessment in Lithuania. Open Life Sciences 7(4): 741-758.
  46. Walley, W.J. and H.A. Hawkes. 1996. A computer-based reappraisal of Biological Monitoring Working Party scores using data from the 1990 River Quality Survey of England and Wales. Water Research 30(9): 2086-2094. https://doi.org/10.1016/0043-1354(96)00013-9
  47. Walley, W.J. and H.A. Hawkes. 1997. A computer-based development of the Biological Monitoring Working Party score system incorporating abundance rating, biotope type and indicator value. Water Research 31(2): 201-210. https://doi.org/10.1016/S0043-1354(96)00249-7
  48. Williams, D.D. and H.B. Hynes. 1976. The ecology of temporary streams I. The faunas of two Canadian streams. International Review of Hydrobiology 61(6): 761-787. https://doi.org/10.1002/iroh.19760610604
  49. Won, D.H., S.J. Kwon and Y.C. JUN. 2008. Aquatic insects of korea. Korea Ecosystem Service, Seoul.
  50. Yoon, I.B. 1995. Aquatic Insects of Korea. Junghaengsa, 262pp.