DOI QR코드

DOI QR Code

뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst

  • 조진오 (제주대학교 생명화학공학과) ;
  • 좌은진 (한국에너지기술연구원) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Jo, Jin-Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jwa, Eunjin (Jeju Global Research Center) ;
  • Mok, Young-Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 투고 : 2017.09.06
  • 심사 : 2018.01.11
  • 발행 : 2018.02.28

초록

기존 건식 개질 반응에 사용되는 니켈 기반 촉매 공정은 활성화 온도가 높고, 촉매 표면의 활성점에 탄소 침착 및 금속 소결 현상 등의 문제점이 있다. 이에 본 연구에서는 촉매공정에 DBD 플라즈마 공정이 결합된 촉매+플라즈마 공정을 이용하여 뷰테인 건식 개질 반응 특성을 조사하고 기존 촉매 공정과 비교 분석하였다. 촉매의 특성을 파악하기 위해 비표면적 분석기, XRD, SEM 및 TEM 등을 사용하여 물리 화학적 특성을 조사 하였다. $580^{\circ}C$에서 $10%Ni/{\gamma}-Al_2O_3$촉매를 사용한 경우 촉매+플라즈마 공정의 경우 촉매 단독 공정에 비해 이산화탄소와 뷰테인 전환율이 각각 27%, 39%향상되었다. 촉매+플라즈마 공정의 경우 플라즈마에 의해 생성된 다양한 활성종의 영향으로 이산화탄소와 뷰테인 전환율 및 생성되는 수소 농도가 증가하였으며, 뷰테인 건식 개질 반응 과정에서 플라즈마에 의해 니켈 촉매의 크기가 감소하고 분산도가 증가하여 반응 효율이 향상되는 것으로 판단되었다.

Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

키워드

참고문헌

  1. Karuppiah, J., Reddy, E. L., and Mok, Y. S., " Anodized Aluminum Oxide Supported NiO-$CeO_2$ Catalyst for Dry Reforming of Propane", Catalysts, 6(154), doi:10.3390/catal6100154, (2016)
  2. Aziznia, A., Bozorgzadeh, H. R., Seyed-Matin, N., Baghalha, M., and Mohamadalizadeh, A., "Comparison of Dry Reforming of Methane in Low Temperature Hybrid Plasma-Catalytic Corona with Thermal Catalytic Reactor over Ni/${\gamma}$-$Al_2O_3$", J. Natural Gas Chem., 21(4), 466-475, (2012) https://doi.org/10.1016/S1003-9953(11)60392-7
  3. Yu, G., Kong, M., Liu, T., Fei, J., and Zheng, X., "Non-Thermal Plasma Assisted $CO_2$ Reforming of Propane over Ni/${\gamma}$-$Al_2O_3$ Catalyst", Catal. Commun., 12, 1318-1322, (2011) https://doi.org/10.1016/j.catcom.2011.05.003
  4. Wang, W., and Wang, Y., "Dry Reforming of Ethanol for Hydrogen Production: Thermodynamic Investigation", Int. J. Hydrogen Energy, 34, 5382-5389, (2009) https://doi.org/10.1016/j.ijhydene.2009.04.054
  5. Khoja, A. H., Tahir, M., and Amin, N. A. S., "Dry Reforming of Methane Using Different Dielectric Materials and DBD Plasma Reactor Configurations", Energy Convers. Manage., 144, 262-274, (2017) https://doi.org/10.1016/j.enconman.2017.04.057
  6. Tu, X., and Whitehead, J. C., "Plasma-Catalytic Dry Reforming of Methane in an Atmospheric Dielectric Barrier Discharge: Under-standing the Synergistic Effect at Low Temperature", Appl. Catal., B., 125, 439-448, (2012) https://doi.org/10.1016/j.apcatb.2012.06.006
  7. Raberg, L. B., Jensen, M. B., Olsbye, U., Daniel, C., Haag, S., Mirodatos, C., and Olafsen Sjastad, A., "Propane Dry Reforming to Synthesis Gas over Ni-Based Catalysts: Influence of Support and Operating Parameters on Catalyst Activity and Stability", J. Catal., 249, 250-260, (2007) https://doi.org/10.1016/j.jcat.2007.04.004
  8. Zhang, H., Li, X., Zhu, F., Cen, K., Du, C., and Tu, X., "Plasma Assisted Dry Reforming of Methanol for Clean Syngas Production and High-Efficiency $CO_2$ Conversion", Chem. Eng. J., 310, 114-119, (2017) https://doi.org/10.1016/j.cej.2016.10.104
  9. Mei, D., Zhu, X., He, Y. -L., Yan, J. D., and Tu, X., "Plasma-Assisted Conversion of $CO_2$ in a Dielectric Barrier Discharge Reactor: Understanding the Effect of Packing Materials", Plasma Sources Sci. Technol., 24(1), DOI: 10.1088/0963-0252/24/1/015011, (2015)
  10. Luisetto, I., Sarno, C., Felicis, D. D., Basoli, F., Battocchio, C., Tuti, S., Licoccia, S., and Bartolomeo, E. D., "Ni Supported on ${\gamma}$-$Al_2O_3$ Promoted by Ru for the Dry Reforming of Methane in Packed and Monolithic Reactors", Fuel Process. Technol., 158, 130-140, (2017) https://doi.org/10.1016/j.fuproc.2016.12.015
  11. Abdullah, B., Ghani, N. A. A., and Vo, D.-V. N., "Recent Advances in Dry Reforming of Methane over Ni-Based Catalysts", J. Cleaner Prod., 162(20), 170-185, (2017) https://doi.org/10.1016/j.jclepro.2017.05.176
  12. Li, Z. -H., Tian, S. -X., Wang, H. -T., and Tian, H. -B., "Plasma Treatment of Ni Catalyst Via a Corona Discharge", J. Mol. Catal. A: Chem., 211, 149-153, (2004) https://doi.org/10.1016/j.molcata.2003.10.003
  13. Fang, X., Lian, J., Nie, K., Zhang, X., Dai, Y., Xu, X., Wang, X., Liu, W., Li, C., and Zhou, W., "Dry Reforming of Methane on Active and Coke Resistant Ni/$Y_2Zr_2O_7$ Catalysts Treated by Dielectric Barrier Discharge Plasma", J. Energy Chem., 25, 825-831, (2016) https://doi.org/10.1016/j.jechem.2016.06.002
  14. Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T., and Tsubaki, N., "Plasma Enhanced Catalytic Reforming of Biomass Tar Model Compound to Syngas", Fuel, 104, 53-57, (2013) https://doi.org/10.1016/j.fuel.2010.05.044
  15. Kathiraser, Y., Thitsartarn, W., Sutthiumporn, K., and Kawi, S., "Inverse $NiAl_2O_4$ on $LaAlO_3$-$l_2O_3$: Unique Catalytic Structure for Stable $CO_2$ Reforming of Methane", J. Phys. Chem. C., 117, 8120-8130, (2013) https://doi.org/10.1021/jp401855x
  16. Petitpas, G., Rollier, J. -D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., and Fulcheri, L., "A Comparative Study of Non-Thermal Plasma Assisted Reforming Technologies", Int. J. Hydrogen Energy, 32, 2848-2867, (2007) https://doi.org/10.1016/j.ijhydene.2007.03.026
  17. Tu, X., and Whitehead, J.C., "Plasma Dry Reforming of Methane in an Atmospheric Pressure AC Gliding Arc Discharge: Cogeneration of Syngas and Carbon Nanomaterials", Int. J. Hydrogen Energy, 39, 9658-9669, (2014) https://doi.org/10.1016/j.ijhydene.2014.04.073
  18. Takenaka, S., Kawashima, K., Matsune, H., and Kishida, M., "Production of CO-Free Hydrogen through the Decomposition of LPG and Kerosene over Ni-Based Catalysts", Appl. Catal., A., 321, 165-174, (2007) https://doi.org/10.1016/j.apcata.2007.01.042
  19. Siahvashi, A., Chesterfield, D., and Adesina A. A., Propane $CO_2$ (Dry) Reforming over Bimetallic Mo-Ni/$Al_2O_3$ Catalyst", Chem. Eng. Sci., 93, 313-325, (2013) https://doi.org/10.1016/j.ces.2013.02.003
  20. Bian, L., Zhang, L., Xia, R., and Li, Z., "Enhanced Low-Temperature $CO_2$ Methanation Activity on Plasma-Prepared Ni-Based Catalyst", J. Nat. Gas Sci. Eng., 27, 1189-1194, (2015) https://doi.org/10.1016/j.jngse.2015.09.066
  21. Magureanu, M., Dobrin, D., Mandache N. B., Cojocaru, B., and Parvulescu, V. I., "Toluene Oxidation by Non-Thermal Plasma Combined with Palladium Catalysts", Front. Chem., 1, doi: 10.3389/fchem.2013.00007, (2013)
  22. Huang, Z., Su, J. -F., Su, X. -Q., Guo, Y. -H., Teng, L. -J., and Yang, C. M., "Preparation and Permeation Characterization of ${\beta}$-Zeolite-Incorporated Composite Membranes", J. Appl. Polym. Sci., 112, 9-18, (2009) https://doi.org/10.1002/app.29361
  23. Sundaram, K. M., and Froment, G. F., "Modeling of Thermal Cracking Kinetics-II: Cracking of iso-Butane, of n-Butane and of Mixtures Ethane-Propane-n-Butane", Chem. Eng. Sci., 32, 609-617, (1977) https://doi.org/10.1016/0009-2509(77)80226-1
  24. Mok, Y. S., Jwa, E., and Hyun, Y. J., "Regeneration of $C_4H_{10}$ Dry Reforming Catalyst by Nonthermal Plasma", J. Energy Chem., 22, 394-402 (2013). https://doi.org/10.1016/S2095-4956(13)60051-0
  25. Zheng, X. -G., Tan, S. -Y., Dong, L. -C., Li, S. -B., Chen, H. -M., and Wei, S. -A., "Experimental and Kinetic Investigation of the Plasma Catalytic Dry Reforming of Methane over Perovskite $LaNiO_3$ Nanoparticles", Fuel Process. Technol., 137, 250-258, (2015) https://doi.org/10.1016/j.fuproc.2015.02.003
  26. Monshi, A., Foroughi, M. R., and Monshi, M. R., "Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD", World J. Nano Sci. Eng., 2, 154-160 (2012) https://doi.org/10.4236/wjnse.2012.23020