DOI QR코드

DOI QR Code

Quality Control of the UHF Wind Profiler Radar

UHF 윈드프로파일러 레이더 자료의 품질 개선

  • 조원기 (부경대학교 지구환경시스템과학부) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 김박사 (부경대학교 지구과학연구소) ;
  • 김민성 (부경대학교 지구과학연구소) ;
  • 윤홍주 (부경대학교 공간정보시스템공학과)
  • Received : 2018.01.06
  • Accepted : 2018.04.15
  • Published : 2018.04.30

Abstract

Wind data observed by wind profiler provide wind vectors with the altitudes using PCL1300, wind computation program. As a result of application with parameters set in program currently, it is difficult to compute wind vectors in the upper air over 3 km. This id because a very strict criterion for parameters removes large amounts of data. In this study, therefore, we improve the methods of application by resetting parameters to expand data collection area of wind vectors and reduce underestimation. Although the acquisition rate of the wind vector increased from 72.2% to 92.2%, the RMSE of the wind speed maintained 1.5 m/s - 3.1 m/s, which is less than 15% of the error rate at each altitude.

고정점에서 고도별 바람을 산출할 수 있는 장비인 윈드프로파일러에 의해 관측된 바람 자료는 바람 산출 프로그램인 PCL1300을 활용하여 바람벡터로 제공된다. 현재 프로그램에 설정된 매개변수에 따른 운용의 결과는 3 km 이상 상층 대기 영역의 바람 산출이 어렵다는 것이다. 이는 매개변수에 대한 매우 엄격한 기준으로 인해 다량의 자료가 제거되기 때문이다. 본 연구에서는 바람벡터의 자료 수집 영역을 확장시키고 과소측정을 줄이기 위해 매개변수를 재설정하여 운용 방식을 개선하였다. 바람벡터의 수집률은 72.2%에서 92.2%로 증가하였음에도 풍속의 RMSE는 고도별 오차율 15% 미만에 해당하는 1.5 m/s - 3.1 m/s를 유지하였다.

Keywords

References

  1. Weber, B. L., Wuertz, D. B., Welsh, D. C., and McPeek, R., "Quality controls for profiler measurements of winds and RASS temperatures," J. Atmos. Oceanic Technol., vol. 10, 1993, pp.452-464. https://doi.org/10.1175/1520-0426(1993)010<0452:QCFPMO>2.0.CO;2
  2. Ishihara, M., Kato, Y., Abo, T., and Kobayashi, K., "Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency," J. of the Meteorological Society of Japan, vol. 84, 2006, pp.1085-1096. https://doi.org/10.2151/jmsj.84.1085
  3. Holleman, I., van Gasteren, H., and Bouten, W., "Quality assessment of weather radar wind profiles during bird migration," J. of Atmos. Oceanic Technol., vol. 25, 2008, pp.2188-2198. https://doi.org/10.1175/2008JTECHA1067.1
  4. Robert, E. Barbre Jr., "Quality control algorithms for the Kennedy Space Center 50-MHz Doppler radar wind profiler winds database," J. of Atmos. Oceanic Technol., vol. 29, 2012, pp.1731-1743. https://doi.org/10.1175/JTECH-D-11-00205.1
  5. Maruri, M., Romo, J. A., and Gomez, L., "Aspects of quality control of wind profiler measurements," Atoms. Meas. Tech., vol. 7, 2014, pp.135-148. https://doi.org/10.5194/amt-7-135-2014
  6. K. Kim, M. Kim, S. Seo, P. Kim, D. Kang, and B. Kwon, "Quality evaluation of wind vectors from UHF wind profiler using radiosonde measurements," J. of Environmental Science International, vol. 24, 2015, pp.134-150.
  7. K. Kim, B. Kim, M. Kim, D. Kang, and B. Kwon, "Accuracy evaluation of UHF wind profiler radar wind vectors by setting a threshold of Signal-to-Noise Ratios," J of Environmental Science International, vol. 25, 2016, pp.1241-1251. https://doi.org/10.5322/JESI.2016.25.9.1241
  8. J. Cho, B. Heo, J. Kim, and J. Lee, "Operating manuals for wind profiler. Technical Note," Korean Meteorological Administration, vol. 3, 2005, pp.11-30.
  9. W. Kang, Y. Moon, and O. Jung, "An analysis on characteristics of turbulence energy dissipation rate from comparison of wind profiler and rawinsonde," J. Korean Earth Sci, vol. 37, 2016, pp.448-464. https://doi.org/10.5467/JKESS.2016.37.7.448
  10. John R. Taylor., "An Introduction to error analysis : The study of uncertainties in physical measurements 2ed," New York: University Science Books, 1982, pp.134-135.