DOI QR코드

DOI QR Code

Studies on structural interaction and performance of cement composite using Molecular Dynamics

  • Sindu, B.S. (Academy of Scientific and Innovative Research) ;
  • Alex, Aleena (Academy of Scientific and Innovative Research) ;
  • Sasmal, Saptarshi (Academy of Scientific and Innovative Research)
  • Received : 2017.11.24
  • Accepted : 2018.02.02
  • Published : 2018.04.25

Abstract

Cementitious composites are multiphase heterogeneous materials with distinct dissimilarity in strength under compression and tension (high under compression and very low under tension). At macro scale, the phenomenon can be well-explained as the material contains physical heterogeneity and pores. But, it is interesting to note that this dissimilarity initiates at molecular level where there is no heterogeneity. In this regard, molecular dynamics based computational investigations are carried out on cement clinkers and calcium silicate hydrate (C-S-H) under tension and compression to trace out the origin of dissimilarity. In the study, effect of strain rate, size of computational volume and presence of un-structured atoms on the obtained response is also investigated. It is identified that certain type of molecular interactions and the molecular structural parameters are responsible for causing the dissimilarity in behavior. Hence, the judiciously modified or tailored molecular structure would not only be able to reduce the extent of dissimilarity, it would also be capable of incorporating the desired properties in heterogeneous composites. The findings of this study would facilitate to take step to scientifically alter the structure of cementitious composites to attain the desired mechanical properties.

Keywords

References

  1. Al-Ostaz, A., Wu, W., Cheng, A.D. and Song, C.R. (2010), "A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement", Compos. Part B: Eng., 41(7), 543-549. https://doi.org/10.1016/j.compositesb.2010.06.005
  2. Bentz, D.P., Coveney, P.V., Garboczi, E.J., Kleyn, M.F. and Stutzman, P.E. (1994), "Cellular automaton simulations of cement hydration and microstructure development", Model. Simul. Mater. Sci. Eng., 2(4), 783. https://doi.org/10.1088/0965-0393/2/4/001
  3. Bonaccorsi, E., Merlino, S. and Taylor, H.F.W. (2004), "The crystal structure of jennite, Ca 9 Si 6 O 18 (OH) 6.8H 2 O", Cement Concrete Res., 34(9), 1481-1488. https://doi.org/10.1016/j.cemconres.2003.12.033
  4. Bonaccorsi, E., Merlino, S. and Kampf, A.R. (2005), "The crystal structure of tobermorite 14 A (plombierite), a C-S-H phase", J. Am. Ceram. Soc., 88(3), 505-512. https://doi.org/10.1111/j.1551-2916.2005.00116.x
  5. Bullard, J.W., Enjolras, E., George, W.L., Satterfield, S.G. and Terrill, J.E. (2010), "A parallel reactiontransport model applied to cement hydration and microstructure development", Model. Simul. Mater. Sci. Eng., 18(2), 025007. https://doi.org/10.1088/0965-0393/18/2/025007
  6. Eftekhari, M. and Mohammadi, S. (2016), "Molecular dynamics simulation of the nonlinear behavior of the CNT-reinforced calcium silicate hydrate (C-S-H) composite", Compos. Part A: Appl. Sci. Manuf., 82, 78-87. https://doi.org/10.1016/j.compositesa.2015.11.039
  7. Golovastikov, N.I. (1975), "Crystal structure of tricalcium silicate, 3CaOSiO_2= C_3S", Sov. Phys. Crystallogr., 20, 441-445.
  8. Heller, L. (1952), "The stucture of dicalcium silicate ${\alpha}$-hydrate", Acta Crystal, 5(6), 724-728. https://doi.org/10.1107/S0365110X52002033
  9. Hu, C., Gao, Y., Chen, B., Zhang, Y. and Li, Z. (2016), "Estimation of the poroelastic properties of calciumsilicate-hydrate (CSH) gel", Mater. Design, 92, 107-113. https://doi.org/10.1016/j.matdes.2015.12.016
  10. Ioannidou, K., Kanduc, M., Li, L., Frenkel, D., Dobnikar, J., Pellenq, R. and Del Gado, E. (2016), "Gelation of calcium-silicate-hydrate in cement", In APS Meeting Abstracts.
  11. Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO 2 micro and nanoparticles", Mater. Design, 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037
  12. Jensen, B.D., Wise, K.E. and Odegard, G.M. (2016), "Simulation of mechanical performance limits and failure of carbon nanotube composites", Model. Simul. Mater. Sci. Eng., 24(2), 025012. https://doi.org/10.1088/0965-0393/24/2/025012
  13. Masoumi, S. and Valipour, H. (2016), "Effects of moisture exposure on the crosslinked epoxy system: an atomistic study", Model. Simul. Mater. Sci. Eng., 24(3), 035011. https://doi.org/10.1088/0965-0393/24/3/035011
  14. Merlino, S., Bonaccorsi, E. and Armbruster, T. (1999), "Tobermorites: Their real structure and orderdisorder (OD) character", Am. Min., 84(10), 1613-1621. https://doi.org/10.2138/am-1999-1015
  15. Merlino, S., Bonaccorsi, E. and Armbruster, T. (2000), "The real structures of clinotobermorite and tobermorite 9 A", Eur. J. Mineral., 12(2), 411-429. https://doi.org/10.1127/0935-1221/2000/0012-0411
  16. Mohan, R., Jadhav, V., Ahmed, A., Rivas, J. and Kelkar, A. (2014), "Effect of plasticizer additives on the mechanical properties of cement composite-a Molecular Dynamics analysis", WASET, Inter. J. Chem. Mol. Nucl. Mater. Metal. Eng., 8(1), 84-88.
  17. Murray, S., Subramani, V., Selvam, R. and Hall, K. (2010), "Molecular dynamics to understand the mechanical behavior of cement paste", J. Transp. Res Board, 2142, 75-82. https://doi.org/10.3141/2142-11
  18. Nazari, A. and Riahi, S. (2011), "The effects of SiO 2 nanoparticles on physical and mechanical properties of high strength compacting concrete", Compos. Part B: Eng., 42(3), 570-578. https://doi.org/10.1016/j.compositesb.2010.09.025
  19. Pellenq, R.J.M., Kushima, A., Shahsavari, R., Van Vliet, K.J., Buehler, M.J., Yip, S. and Ulm, F.J. (2009), "A realistic molecular model of cement hydrates", Proc. Natl. Acad. Sci., 106(38), 16102-16107. https://doi.org/10.1073/pnas.0902180106
  20. Plassard, C., Lesniewska, E., Pochard, I. and Nonat, A. (2007), "Intrinsic elastic properties of Calcium Silicate Hydrates by nanoindentation", Proceedings of the 12th Inter. Cong. Chem. Cem.
  21. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039
  22. Richardson, I.G. (2008), "The calcium silicate hydrates", Cement Concrete Res., 38(2), 137-158. https://doi.org/10.1016/j.cemconres.2007.11.005
  23. Shahsavari, R., Buehler, M.J., Pellenq, R.J.M. and Ulm, F.J. (2009), "First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite", J. Am. Ceram. Soc., 92(10), 2323-2330. https://doi.org/10.1111/j.1551-2916.2009.03199.x
  24. Shannag, M.J. (2000), "High strength concrete containing natural pozzolan and silica fume", Cem. Concr. Compos., 22(6), 399-406. https://doi.org/10.1016/S0958-9465(00)00037-8
  25. Sindu, B.S. and Sasmal, S. (2015), "Evaluation of mechanical characteristics of nano modified epoxy based polymers using molecular dynamics", Comput. Mater. Sci., 96, 146-158. https://doi.org/10.1016/j.commatsci.2014.09.003
  26. Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18(9), 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  27. Thompson, A.P., Plimpton, S.J. and Mattson, W. (2009), "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", J. Chem. Phys., 131(15), 154107. https://doi.org/10.1063/1.3245303
  28. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F. (2001), "Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker", Cem. Concr. Res., 31(4), 555-561. https://doi.org/10.1016/S0008-8846(00)00505-6
  29. Wu, W., Al-Ostaz, A., Cheng, A.H.D. and Song, C.R. (2011), "Computation of elastic properties of Portland cement using molecular dynamics", J. Nanomech. Micromech., 1(2), 84-90. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000026
  30. Zhou, J., Huang, J. and Jin, L. (2015), "Nano-micro modelling of mechanical properties of cement paste based on molecular dynamics", Adv. Cem. Res., 28(2), 73-83.

Cited by

  1. Methodology for predicting the properties of cement composites at different scales vol.72, pp.5, 2020, https://doi.org/10.1680/jmacr.18.00246