DOI QR코드

DOI QR Code

Numerical simulation of material damage for structural steels S235JR and S355J2G3

  • Kossakowski, Pawel G. (Department of Strength of Materials and Concrete Structures, Kielce University of Technology) ;
  • Wcislik, Wiktor (Department of Strength of Materials and Concrete Structures, Kielce University of Technology)
  • Received : 2017.12.12
  • Accepted : 2018.02.03
  • Published : 2018.04.25

Abstract

The paper discusses numerical analysis of tensile notched specimens with the use of Gurson - Tvergaard - Needleman (GTN) material model. The analysis concerned S235JR and S355J2G3 steel grades, subjected to medium stress state triaxiality ratio, amounting 0.739. A complete procedure for FEM model preparation was described, paying special attention to the issue of determining material constants in the GTN model. An example of critical void volume fraction ($f_c$) experimental determination procedure was presented. Finally, the results of numerical analyses were discussed, indicating the differences between steel grades under investigation.

Keywords

References

  1. Boyd, G.M. (2016), "Brittle Fracture in Steel Structures", Elsevier.
  2. Brnic, J. et al. (2013), "Analysis of experimental data on the behavior of steel S275JR - Reliability of the modern design", Mater. Design, 47, 497-504. https://doi.org/10.1016/j.matdes.2012.12.037
  3. Cao, T.S., Maire, E., Verdu, C., Bobadilla, C., Lasne, P., Montmitonnet, P. and Bouchard, P.O. (2014), "Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests - Application to the identification of a shear modified GTN model", Comput. Mater. Sci., 84, 175-187. https://doi.org/10.1016/j.commatsci.2013.12.006
  4. Cao, T.S., Montmitonnet, P. and Bouchard, P.O. (2013), "A detailed description of the Gurson-Tvergaard-Needleman model within a mixed velocity-pressure finite element formulation", Int. J. Numer. Meth. Eng., 96, 561-583. doi:10.1002/nme.4571
  5. Chauvenet, W. (1863), A Manual of Spherical and Practical Astronomy V. II. Reprint of 1891. 5th Ed., Dover, N.Y., 1960. 474-566.
  6. Chu, C. and Needleman, A. (1980),"Void nucleation effects in biaxially stretched sheets", J. Eng. Mater. Technol., 102, 249-256. https://doi.org/10.1115/1.3224807
  7. Connor, R., Kaufmann, E., Fisher, J. and Wright, W. (2007), "Prevention and mitigation strategies to address recent brittle fractures in steel bridges", J. Bridge Eng., 12, 164-173. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(164)
  8. Faleskog, J., Gao, X. and Shih, C.F. (1998), "Cell model for nonlinear fracture analysis - I. Micromechanics calibration", Int. J. Fracture., 89(4), 355-373. https://doi.org/10.1023/A:1007421420901
  9. Gatea, S., Ou, H., Lu, B. and McCartney, G. (2017), "Modelling of ductile fracture in single point incremental forming using a modified GTN model", Eng. Fract. Mech., 186, 59-79. https://doi.org/10.1016/j.engfracmech.2017.09.021
  10. Gurson, A.L. (1977), "Continuum theory of ductile rupture by void nucleation and growth. Part I - yield criteria and flow rules for porous ductile materials", J. Eng. Mater. Technol., 99, 2-15. https://doi.org/10.1115/1.3443401
  11. Hesse, A.A, Atadero, R.A. and Mahmoud, H.N. (2014), "Approach-span failure of the Hoan Bridge as a case study for engineering students and practicing engineers", J. Perform. Constr. Fac., 28, 341-348. https://patentimages.storage.googleapis.com/EP2385245A1/imgf0002.png https://doi.org/10.1061/(ASCE)CF.1943-5509.0000403
  12. Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng.M., 37, 171-183. https://doi.org/10.1111/ffe.12097
  13. Koplik, J. and Needleman, A. (1988), "Void growth and coalescence in porous plastic solids", Int. J. Solids Struct., 24, 835-853. https://doi.org/10.1016/0020-7683(88)90051-0
  14. Kossakowski, P. and Wcislik, W. (2013), Effect of stress state triaxiality on the value of void nucleation strain in S235JR steel" (in Polish), Przeglad Mechaniczny, 3, 15-21.
  15. Kossakowski, P.G. (2013), "Fatigue strength of an over one hundred year old railway bridge", Baltic J. Road Bridge Eng., 8(3), 166-173. https://doi.org/10.3846/bjrbe.2013.21
  16. Kossakowski, P.G. (2015), "Microstructural failure criteria for S235JR steel subjected to spatial stress states", Arch. Ci. Mech. Eng., 15(1), 195-205. https://doi.org/10.1016/j.acme.2014.02.008
  17. Kossakowski, P.G. and Wcislik, W. (2014a), "Effect of critical void volume fraction $f_F$ on results of ductile fracture simulation for S235JR steel under multi-axial stress states", Key Eng. Mater., Fract. Fatigue Mater. Struct., 598, 113-118.
  18. Kossakowski, P.G. and Wcislik, W. (2014b), "Experimental determination and application of critical void volume fraction $f_c$ for S235JR steel subjected to multi-axial stress state", Recent Adv. Comput. Mech., 303-309.
  19. Kossakowski, P.G. (2014a), "An analysis of the Tvergaard parameters at low initial stress triaxiality for S235JR steel", Polish Maritime Res., 21(4), 100-107.
  20. Kossakowski, P.G. (2014b), "Stress modified critical strain criterion for S235JR steel at low initial stress triaxiality", J. Theor. Appl.Mech., 52(4), 995-1006.
  21. Mahmoud, H.N., Connor, R.J. and Fisher, J.W. (2005), "Finite element investigation of the fracture potential of highly constrained details in steel plate members", Comput -Aided Civ Infrastruct. Eng., 20, 383-392. https://doi.org/10.1111/j.1467-8667.2005.00404.x
  22. Malcher, L., Andrade Pires, F.M. and Cesar de Sa, J.M.A. (2014), "An extended GTN model for ductile fracture under high and low stress triaxiality", Int. J. Numer Method. Eng., 54, 193-228.
  23. Oral, A., Anlas, G. and Lambros, J. (2010), "Determination of Gurson-Tvergaard-Needleman model parameters for failure of a polymeric material", Int. J. Damage Mech., 21(1), 3-25. https://doi.org/10.1177/1056789510385261
  24. Ramazani, A., Abbasi, M., Prahl, U. and Bleck, W. (2012), "Failure analysis of DP600 steel during the cross-die test", Comput. Mater. Sci., 64, 101-105. https://doi.org/10.1016/j.commatsci.2012.01.031
  25. Rasmussen, A.N. (2011), "Steel tower for a wind turbine", EP Patent App. EP20, 100, 161, 946.
  26. Richelsen, A.B. andTvergaard, V. (1994), "Dilatant plasticity or upper bound estimates for porous ductilesolids", Acta Metall Mater., 42(8), 2561-2577. https://doi.org/10.1016/0956-7151(94)90198-8
  27. Slimane, A., Bouchouicha, B., Benguediab, M. and Slimane, S. (2015), "Parametric study of the ductile damage by the Gurson-Tvergaard-Needleman model of structures in carbon steel A48-AP", J. Mater. Res. Technol., 4(2), 217-223. https://doi.org/10.1016/j.jmrt.2014.12.011
  28. Smith, J., Malhotra, R., Liu, W. and Cao, J. (2013), "Application of a shear-modified GTN model to incremental sheet forming", Proceedings of the AIP conference, 1567, 824-827.
  29. Teng, B., Wang, W., Liu, Y. and Yuan, S. (2014), "Bursting prediction of hydroforming aluminium alloy tube basedon Gurson-Tvergaard-Needleman damage model", Procedia Eng., 81, 2211-2216. https://doi.org/10.1016/j.proeng.2014.10.310
  30. Tvergaard, V. (1981), "Influence of voids on shear band instabilities under plane strain conditions", Int. J. Fract., 17(4), 389-407. https://doi.org/10.1007/BF00036191
  31. Tvergaard, V. and Needleman, A.(1984), "Analysis of the cup-cone fracture in a round tensile bar", Acta Metall Mater., 32(1), 157-169. https://doi.org/10.1016/0001-6160(84)90213-X
  32. Tvergaard, V. and Needleman, A. (2006), "Three dimensional microstructural effects on plane strain ductile crack growth", Int. J. Solids Struct., 43, 6165-6179. https://doi.org/10.1016/j.ijsolstr.2005.05.057
  33. Vukelic, G. and Brnic, J. (2016), "Predicted fracture behavior of shaft steels with improved corrosion resistance", Metals - Open Access Metallurgy J., 6(2), 40.
  34. Vukelic, G. and Brnic, J. (2017), "Numerical prediction of fracture behavior for austenitic and martensitic stainless steels", Int. J. Appl. Mech., 9(4), 1750052 (11p). https://doi.org/10.1142/S1758825117500521
  35. Wcislik, W. (2014a),"Experimental and numerical determination and analysis of Gurson-Tvergaard-Needleman model parameters for S355 steel in complex stress states" (in Polish), Ph.D. Dissertation, Kielce University of Technology, Poland.
  36. Wcislik, W. (2014b), "Numerical determination of critical void nucleation strain in the Gurson-Tvergaard-Needleman porous material model for low stress state triaxiality ratio", Proceedings of the 23rd International Conference on Metallurgy and Materials, Brno, Czech Republic.
  37. Wcislik, W. (2016), "Experimental determination of critical void volume fraction $f_F$ for the Gurson Tvergaard Needleman (GTN) model", Procedia Struct. Integrity, 2, 1676-1683. https://doi.org/10.1016/j.prostr.2016.06.212
  38. Xia, L. and Shih, C.F. (1995), "Ductile crack growth - I. A numerical study using computational cells with microstructurally-based length scales", J. Mech. Phys. Solids, 43(2), 233-259. https://doi.org/10.1016/0022-5096(94)00064-C
  39. Xu, Y. and Qian, C. (2013), "Application of Gurson-Tvergaard-Needleman constitutive model to the tensile behavior of reinforcing bars with corrosion pits", (Ed., Kreplak L.), PLoS ONE, 8(1), e54368. doi:10.1371/journal.pone.0054368.

Cited by

  1. Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg vol.14, pp.18, 2018, https://doi.org/10.3390/ma14185141