References
- Boyd, G.M. (2016), "Brittle Fracture in Steel Structures", Elsevier.
- Brnic, J. et al. (2013), "Analysis of experimental data on the behavior of steel S275JR - Reliability of the modern design", Mater. Design, 47, 497-504. https://doi.org/10.1016/j.matdes.2012.12.037
- Cao, T.S., Maire, E., Verdu, C., Bobadilla, C., Lasne, P., Montmitonnet, P. and Bouchard, P.O. (2014), "Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests - Application to the identification of a shear modified GTN model", Comput. Mater. Sci., 84, 175-187. https://doi.org/10.1016/j.commatsci.2013.12.006
- Cao, T.S., Montmitonnet, P. and Bouchard, P.O. (2013), "A detailed description of the Gurson-Tvergaard-Needleman model within a mixed velocity-pressure finite element formulation", Int. J. Numer. Meth. Eng., 96, 561-583. doi:10.1002/nme.4571
- Chauvenet, W. (1863), A Manual of Spherical and Practical Astronomy V. II. Reprint of 1891. 5th Ed., Dover, N.Y., 1960. 474-566.
- Chu, C. and Needleman, A. (1980),"Void nucleation effects in biaxially stretched sheets", J. Eng. Mater. Technol., 102, 249-256. https://doi.org/10.1115/1.3224807
- Connor, R., Kaufmann, E., Fisher, J. and Wright, W. (2007), "Prevention and mitigation strategies to address recent brittle fractures in steel bridges", J. Bridge Eng., 12, 164-173. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(164)
- Faleskog, J., Gao, X. and Shih, C.F. (1998), "Cell model for nonlinear fracture analysis - I. Micromechanics calibration", Int. J. Fracture., 89(4), 355-373. https://doi.org/10.1023/A:1007421420901
- Gatea, S., Ou, H., Lu, B. and McCartney, G. (2017), "Modelling of ductile fracture in single point incremental forming using a modified GTN model", Eng. Fract. Mech., 186, 59-79. https://doi.org/10.1016/j.engfracmech.2017.09.021
- Gurson, A.L. (1977), "Continuum theory of ductile rupture by void nucleation and growth. Part I - yield criteria and flow rules for porous ductile materials", J. Eng. Mater. Technol., 99, 2-15. https://doi.org/10.1115/1.3443401
- Hesse, A.A, Atadero, R.A. and Mahmoud, H.N. (2014), "Approach-span failure of the Hoan Bridge as a case study for engineering students and practicing engineers", J. Perform. Constr. Fac., 28, 341-348. https://patentimages.storage.googleapis.com/EP2385245A1/imgf0002.png https://doi.org/10.1061/(ASCE)CF.1943-5509.0000403
- Kiran, R. and Khandelwal, K. (2014), "Gurson model parameters for ductile fracture simulation in ASTM A992 steels", Fatigue Fract. Eng.M., 37, 171-183. https://doi.org/10.1111/ffe.12097
- Koplik, J. and Needleman, A. (1988), "Void growth and coalescence in porous plastic solids", Int. J. Solids Struct., 24, 835-853. https://doi.org/10.1016/0020-7683(88)90051-0
- Kossakowski, P. and Wcislik, W. (2013), Effect of stress state triaxiality on the value of void nucleation strain in S235JR steel" (in Polish), Przeglad Mechaniczny, 3, 15-21.
- Kossakowski, P.G. (2013), "Fatigue strength of an over one hundred year old railway bridge", Baltic J. Road Bridge Eng., 8(3), 166-173. https://doi.org/10.3846/bjrbe.2013.21
- Kossakowski, P.G. (2015), "Microstructural failure criteria for S235JR steel subjected to spatial stress states", Arch. Ci. Mech. Eng., 15(1), 195-205. https://doi.org/10.1016/j.acme.2014.02.008
-
Kossakowski, P.G. and Wcislik, W. (2014a), "Effect of critical void volume fraction
$f_F$ on results of ductile fracture simulation for S235JR steel under multi-axial stress states", Key Eng. Mater., Fract. Fatigue Mater. Struct., 598, 113-118. -
Kossakowski, P.G. and Wcislik, W. (2014b), "Experimental determination and application of critical void volume fraction
$f_c$ for S235JR steel subjected to multi-axial stress state", Recent Adv. Comput. Mech., 303-309. - Kossakowski, P.G. (2014a), "An analysis of the Tvergaard parameters at low initial stress triaxiality for S235JR steel", Polish Maritime Res., 21(4), 100-107.
- Kossakowski, P.G. (2014b), "Stress modified critical strain criterion for S235JR steel at low initial stress triaxiality", J. Theor. Appl.Mech., 52(4), 995-1006.
- Mahmoud, H.N., Connor, R.J. and Fisher, J.W. (2005), "Finite element investigation of the fracture potential of highly constrained details in steel plate members", Comput -Aided Civ Infrastruct. Eng., 20, 383-392. https://doi.org/10.1111/j.1467-8667.2005.00404.x
- Malcher, L., Andrade Pires, F.M. and Cesar de Sa, J.M.A. (2014), "An extended GTN model for ductile fracture under high and low stress triaxiality", Int. J. Numer Method. Eng., 54, 193-228.
- Oral, A., Anlas, G. and Lambros, J. (2010), "Determination of Gurson-Tvergaard-Needleman model parameters for failure of a polymeric material", Int. J. Damage Mech., 21(1), 3-25. https://doi.org/10.1177/1056789510385261
- Ramazani, A., Abbasi, M., Prahl, U. and Bleck, W. (2012), "Failure analysis of DP600 steel during the cross-die test", Comput. Mater. Sci., 64, 101-105. https://doi.org/10.1016/j.commatsci.2012.01.031
- Rasmussen, A.N. (2011), "Steel tower for a wind turbine", EP Patent App. EP20, 100, 161, 946.
- Richelsen, A.B. andTvergaard, V. (1994), "Dilatant plasticity or upper bound estimates for porous ductilesolids", Acta Metall Mater., 42(8), 2561-2577. https://doi.org/10.1016/0956-7151(94)90198-8
- Slimane, A., Bouchouicha, B., Benguediab, M. and Slimane, S. (2015), "Parametric study of the ductile damage by the Gurson-Tvergaard-Needleman model of structures in carbon steel A48-AP", J. Mater. Res. Technol., 4(2), 217-223. https://doi.org/10.1016/j.jmrt.2014.12.011
- Smith, J., Malhotra, R., Liu, W. and Cao, J. (2013), "Application of a shear-modified GTN model to incremental sheet forming", Proceedings of the AIP conference, 1567, 824-827.
- Teng, B., Wang, W., Liu, Y. and Yuan, S. (2014), "Bursting prediction of hydroforming aluminium alloy tube basedon Gurson-Tvergaard-Needleman damage model", Procedia Eng., 81, 2211-2216. https://doi.org/10.1016/j.proeng.2014.10.310
- Tvergaard, V. (1981), "Influence of voids on shear band instabilities under plane strain conditions", Int. J. Fract., 17(4), 389-407. https://doi.org/10.1007/BF00036191
- Tvergaard, V. and Needleman, A.(1984), "Analysis of the cup-cone fracture in a round tensile bar", Acta Metall Mater., 32(1), 157-169. https://doi.org/10.1016/0001-6160(84)90213-X
- Tvergaard, V. and Needleman, A. (2006), "Three dimensional microstructural effects on plane strain ductile crack growth", Int. J. Solids Struct., 43, 6165-6179. https://doi.org/10.1016/j.ijsolstr.2005.05.057
- Vukelic, G. and Brnic, J. (2016), "Predicted fracture behavior of shaft steels with improved corrosion resistance", Metals - Open Access Metallurgy J., 6(2), 40.
- Vukelic, G. and Brnic, J. (2017), "Numerical prediction of fracture behavior for austenitic and martensitic stainless steels", Int. J. Appl. Mech., 9(4), 1750052 (11p). https://doi.org/10.1142/S1758825117500521
- Wcislik, W. (2014a),"Experimental and numerical determination and analysis of Gurson-Tvergaard-Needleman model parameters for S355 steel in complex stress states" (in Polish), Ph.D. Dissertation, Kielce University of Technology, Poland.
- Wcislik, W. (2014b), "Numerical determination of critical void nucleation strain in the Gurson-Tvergaard-Needleman porous material model for low stress state triaxiality ratio", Proceedings of the 23rd International Conference on Metallurgy and Materials, Brno, Czech Republic.
-
Wcislik, W. (2016), "Experimental determination of critical void volume fraction
$f_F$ for the Gurson Tvergaard Needleman (GTN) model", Procedia Struct. Integrity, 2, 1676-1683. https://doi.org/10.1016/j.prostr.2016.06.212 - Xia, L. and Shih, C.F. (1995), "Ductile crack growth - I. A numerical study using computational cells with microstructurally-based length scales", J. Mech. Phys. Solids, 43(2), 233-259. https://doi.org/10.1016/0022-5096(94)00064-C
- Xu, Y. and Qian, C. (2013), "Application of Gurson-Tvergaard-Needleman constitutive model to the tensile behavior of reinforcing bars with corrosion pits", (Ed., Kreplak L.), PLoS ONE, 8(1), e54368. doi:10.1371/journal.pone.0054368.
Cited by
- Experimental and Numerical Investigation into Failure Modes of Tension Angle Members Connected by One Leg vol.14, pp.18, 2018, https://doi.org/10.3390/ma14185141