DOI QR코드

DOI QR Code

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj (Department of Mechanical Engineering, Sir Padampat Singhania University) ;
  • Choudhury, Achintya (Department of Mechanical Engineering, Sir Padampat Singhania University) ;
  • Sharma, Avadesh K. (Rajkiya Engineering College)
  • 투고 : 2017.07.09
  • 심사 : 2018.01.31
  • 발행 : 2018.04.25

초록

This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

키워드

참고문헌

  1. Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2006), "Natural frequencies of laminated composite plates using third order shear deformation theory", Comput. Struct., 72(3), 273-279 https://doi.org/10.1016/j.compstruct.2004.11.012
  2. Andakhshideh, A., Maleki, S. and Aghdam, M.M. (2010), "Non-linear bending analysis of laminated sector plates using generalized differential quadrature", Comput. Struct., 92(9), 2258-2264. https://doi.org/10.1016/j.compstruct.2009.08.007
  3. Asadi, E. and Fariborz, S.J. (2012), "Free vibration of composite plates with mixed boundary conditions based on higher-order shear deformation theory", Arch. Appl. Mech., 82(6), 755-766. https://doi.org/10.1007/s00419-011-0588-y
  4. Ashour, A.S. (2004), "Vibration of variable thickness plates with edges elastically re-strained against translation and rotation", Thin-Wall. Struct., 42, 1-24. https://doi.org/10.1016/S0263-8231(03)00127-7
  5. Chang, S. (2000), "Differential Quadrature and its Applications in Engineering", Springer-Verlag London Limited, London, UK.
  6. Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
  7. Civalek, O. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44(12-13), 725-731. https://doi.org/10.1016/j.finel.2008.04.001
  8. Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
  9. Ferreira, A.J.M. and Fasshauer, G.E. (2007), "Analysis of natural frequencies of composite plates by an RBF-pseudospectral method", Comput. Struct., 79(2), 202-210. https://doi.org/10.1016/j.compstruct.2005.12.004
  10. Gorman, D.J. (1997), "Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method", J. Sound Vib., 207(3), 335-350. https://doi.org/10.1006/jsvi.1997.1107
  11. Gurses, M., Civalek, O. Korkmaz, A. and Ersoy, E. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Method. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  12. Hsu, M.H. (2010), "Vibration analysis of orthotropic rectangular plates on elastic foundations", Comput. Struct., 92(4), 844-852. https://doi.org/10.1016/j.compstruct.2009.09.015
  13. Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Comput. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
  14. Kapuria, S. and Achary, G.G.S. (2005), "A coupled zigzag theory for the dynamics of piezoelectric hybrid cross-ply plates", Arch. Appl. Mech., 75(1), 42-57. https://doi.org/10.1007/s00419-005-0386-5
  15. Karami, G. and Malekzadeh, P. (2002), "Static and stability analysis of arbitrary straight-sided quadrilateral thin plates by DQM", Int. J. Solids Struct., 39(19), 4927-4947. https://doi.org/10.1016/S0020-7683(02)00403-1
  16. Karami, G., Malekzadeh, P. and Mohebpour, S.R. (2006), "DQM free vibration analysis of moderately thick symmetric laminated plates with elastically restrained edges", Comput. Struct., 74(1), 115-125. https://doi.org/10.1016/j.compstruct.2006.02.014
  17. Khanm I.A. and Awari, G.K. (2015), "Harmonic analysis of square plate with and without uncertain parameters", Int. J. Recent Inn. Trends Comput. Comm., 3(2), 13-16
  18. Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128(3), 377-395. https://doi.org/10.1016/0022-460X(89)90781-5
  19. Li, K.M. and Yu, Z. (2009), "A simple formula for predicting resonant frequencies of a rectangular plate with uniformly restrained edges", J. Sound Vib., 327(1-2), 254-268. https://doi.org/10.1016/j.jsv.2009.06.011
  20. Li, W.L., Zhang, X., Du, J. and Liu, Z. (2009), "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports", J. Sound Vib., 321(1-2), 254-269. https://doi.org/10.1016/j.jsv.2008.09.035
  21. Liew, K.M., Han, J.B. and Xiao, Z.M. (1996), "Differential quadrature method for thick symmetric cross-ply laminates with first-order shear exibility", Int. J. Solids Struct., 33(18), 2647-2658. https://doi.org/10.1016/0020-7683(95)00174-3
  22. Liu, F.L. (2000), "Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method", Int. J. Solids Struct., 37(51), 7671-7688. https://doi.org/10.1016/S0020-7683(99)00300-5
  23. Maithry, K. and Chandra Mohan Rao, B.D. (2015), "Dynamic analysis of laminated composite plates", Int. J. Res. Eng. Technol., 4(13), 116-121.
  24. Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick laminated annular sector plates using a hybrid method", Comput. Struct., 90(4), 428-437. https://doi.org/10.1016/j.compstruct.2009.04.015
  25. Nath, Y. and Shukla, K.K. (2001), "Non-linear transient analysis of moderately thick laminated composite plates", J. Sound Vib., 247(3), 509-526. https://doi.org/10.1006/jsvi.2001.3752
  26. Ngo, D., Cong, N., Duy, M., Karunasena, W. and Cong, T.T. (2011), "Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method", Comput. Struct., 89(1-2), 1-2. https://doi.org/10.1016/j.compstruc.2010.07.012
  27. Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  28. Ohya, F., Ueda, M., Uchiyama, T. and Kikuchi, M. (2006), "Free vibration analysis by the superposition method of rectangular Mindlin plates with internal columns resting on uniform elastic edge supports", J. Sound Vib., 289(1-2), 1-24. https://doi.org/10.1016/j.jsv.2005.01.030
  29. Rao, Y.S. and Reddy, B.S. (2012), "Harmonic analysis of composite propeller for marine applications", Int. J. Res. Eng. Technol., 1(3), 257-260. https://doi.org/10.15623/ijret.2012.0103010
  30. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  31. Senthilnathan, N.R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987), "Buckling of shear deformable plates", AIAA J., 25(9), 1268-71. https://doi.org/10.2514/3.48742
  32. Sharma, A.K., Mittal, N.D. and Sharma, A. (2014), "Free vibration analysis of moderately thick Antisymmetric angle ply laminated rectangular plates with elastic edge constraints", Mech. Adv. Mater. Struct., 21(5), 341-348. https://doi.org/10.1080/15376494.2012.680678
  33. Sharma, A.K. and Mittal, N. D. (2013), "Free vibration analysis of laminated composite plates with elastically restrained edges using FEM", Central. Eur. J. Eng., 3(2), 306-315.
  34. Sharma, A., Sharda, H.B. and Nath, Y. (2005), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030
  35. Sharma, A.K. and Mittal, N.D. (2010), "Review on stress and vibration analysis of composite plates", J. Appl. Sci., 10(23), 3156-3166. https://doi.org/10.3923/jas.2010.3156.3166
  36. Sharma, A.K., Mittal, N.D. and Sharma, A. (2011), "Free vibration analysis of moderately thick antisymmetric cross-ply laminated rectangular plates with elastic edge constraints", Int. J. Mech. Sci., 53(9), 688-695. https://doi.org/10.1016/j.ijmecsci.2011.05.012
  37. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
  38. Shu, C. and Wang, C.M. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21, 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
  39. Useche, J., Albuquerque, E.L. and Sollero, P. (2012), "Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method", Eng. Anal. Bound. Elem., 36(11), 1528-1535. https://doi.org/10.1016/j.enganabound.2012.05.002
  40. Wang, X. and Wang, Y. (2004), "Free vibration analyses of thin sector plates by the new version of differential quadrature method", Comput. Method. Appl. M., 193(36-38), 3957-3971. https://doi.org/10.1016/j.cma.2004.02.010
  41. Wang, X., Gan, L. and Zhang, Y. (2008), "Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides", Adv. Eng. Softw., 39(6), 497-504. https://doi.org/10.1016/j.advengsoft.2007.03.011
  42. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
  43. Zhang, X. and Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326(1-2), 221-234. https://doi.org/10.1016/j.jsv.2009.04.021
  44. Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Comput. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
  45. Zhou, D. (2001), "Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh Ritz method", Int. J. Solids Struct., 38(32-33), 5565-5580. https://doi.org/10.1016/S0020-7683(00)00384-X

피인용 문헌

  1. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
  2. Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2018, https://doi.org/10.12989/acc.2020.9.3.301
  3. Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
  4. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
  5. Two rectangular elements based on analytical functions vol.5, pp.2, 2018, https://doi.org/10.12989/acd.2020.5.2.147
  6. Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
  7. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.355