DOI QR코드

DOI QR Code

Epilepsy syndromes during the first year of life and the usefulness of an epilepsy gene panel

  • Lee, Eun Hye (Department of Pediatrics, College of Medicine, Kyung Hee University)
  • Received : 2018.02.18
  • Accepted : 2018.03.28
  • Published : 2018.04.15

Abstract

Recent advances in genetics have determined that a number of epilepsy syndromes that occur in the first year of life are associated with genetic etiologies. These syndromes range from benign familial epilepsy syndromes to early-onset epileptic encephalopathies that lead to poor prognoses and severe psychomotor retardation. An early genetic diagnosis can save time and overall cost by reducing the amount of time and resources expended to reach a diagnosis. Furthermore, a genetic diagnosis can provide accurate prognostic information and, in certain cases, enable targeted therapy. Here, several early infantile epilepsy syndromes with strong genetic associations are briefly reviewed, and their genotype-phenotype correlations are summarized. Because the clinical presentations of these disorders frequently overlap and have heterogeneous genetic causes, next-generation sequencing (NGS)-based gene panel testing represents a more powerful diagnostic tool than single gene testing. As genetic information accumulates, genetic testing will likely play an increasingly important role in diagnosing pediatric epilepsy. However, the efforts of clinicians to classify phenotypes in nondiagnosed patients and improve their ability to interpret genetic variants remain important in the NGS era.

Keywords

References

  1. Deprez L, Jansen A, De Jonghe P. Genetics of epilepsy syndromes starting in the first year of life. Neurology 2009;72:273-81. https://doi.org/10.1212/01.wnl.0000339494.76377.d6
  2. Ottman R, Hirose S, Jain S, Lerche H, Lopes-Cendes I, Noebels JL, et al. Genetic testing in the epilepsies--report of the ILAE Genetics Commission. Epilepsia 2010;51:655-70. https://doi.org/10.1111/j.1528-1167.2009.02429.x
  3. Plouin P, Anderson V. Benign familial and non-familial neonatal seizures. In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P, editors. Epileptic syndromes in infancy, childhood and adolescence. 3rd ed. Montrouge: John Libbey, 2002:3-13.
  4. Rett A, Teubel R. Neugeborenenkrampfe im Rahmen einer epileptisch belasteten Familie. Wien Klin Wochenschr 1964;76:609-13.
  5. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003;126(Pt 12):2726-37. https://doi.org/10.1093/brain/awg286
  6. Grinton BE, Heron SE, Pelekanos JT, Zuberi SM, Kivity S, Afawi Z, et al. Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia 2015;56:1071-80. https://doi.org/10.1111/epi.13020
  7. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279:403-6. https://doi.org/10.1126/science.279.5349.403
  8. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18:53-5. https://doi.org/10.1038/ng0198-53
  9. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18:25-9. https://doi.org/10.1038/ng0198-25
  10. Borgatti R, Zucca C, Cavallini A, Ferrario M, Panzeri C, Castaldo P, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology 2004;63:57-65. https://doi.org/10.1212/01.WNL.0000132979.08394.6D
  11. Dedek K, Fusco L, Teloy N, Steinlein OK. Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 2003;54:21-7. https://doi.org/10.1016/S0920-1211(03)00037-8
  12. Steinlein OK, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res 2007;73:245-9. https://doi.org/10.1016/j.eplepsyres.2006.10.010
  13. Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T, Claes LR, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 2012;71:15-25. https://doi.org/10.1002/ana.22644
  14. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A 2001;98:12272-7. https://doi.org/10.1073/pnas.211431298
  15. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H. Peripheral nerve hyperexcitability due to dominantnegative KCNQ2 mutations. Neurology 2007;69:2045-53. https://doi.org/10.1212/01.wnl.0000275523.95103.36
  16. Zhou X, Ma A, Liu X, Huang C, Zhang Y, Shi R, et al. Infantile seizures and other epileptic phenotypes in a Chinese family with a missense mutation of KCNQ2. Eur J Pediatr 2006;165:691-5. https://doi.org/10.1007/s00431-006-0157-5
  17. Berkovic SF, Heron SE, Giordano L, Marini C, Guerrini R, Kaplan RE, et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004;55:550-7. https://doi.org/10.1002/ana.20029
  18. Heron SE, Crossland KM, Andermann E, Phillips HA, Hall AJ, Bleasel A, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002;360:851-2. https://doi.org/10.1016/S0140-6736(02)09968-3
  19. Scalmani P, Rusconi R, Armatura E, Zara F, Avanzini G, Franceschetti S, et al. Effects in neocortical neurons of mutations of the Na(v)1.2 Na+ channel causing benign familial neonatal-infantile seizures. J Neurosci 2006;26:10100-9. https://doi.org/10.1523/JNEUROSCI.2476-06.2006
  20. Xu R, Thomas EA, Jenkins M, Gazina EV, Chiu C, Heron SE, et al. A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel. Mol Cell Neurosci 2007;35:292-301. https://doi.org/10.1016/j.mcn.2007.03.003
  21. Mulley JC, Heron SE, Dibbens LM. Proposed genetic classification of the "benign" familial neonatal and infantile epilepsies. Epilepsia 2011;52:649-50. https://doi.org/10.1111/j.1528-1167.2010.02953.x
  22. Shi X, Yasumoto S, Kurahashi H, Nakagawa E, Fukasawa T, Uchiya S, et al. Clinical spectrum of SCN2A mutations. Brain Dev 2012;34:541-5. https://doi.org/10.1016/j.braindev.2011.09.016
  23. Vigevano F, Fusco L, Di Capua M, Ricci S, Sebastianelli R, Lucchini P. Benign infantile familial convulsions. Eur J Pediatr 1992;151:608-12. https://doi.org/10.1007/BF01957732
  24. Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90:152-60. https://doi.org/10.1016/j.ajhg.2011.12.003
  25. Schubert J, Paravidino R, Becker F, Berger A, Bebek N, Bianchi A, et al. PRRT2 mutations are the major cause of benign familial infantile seizures. Hum Mutat 2012;33:1439-43. https://doi.org/10.1002/humu.22126
  26. Ono S, Yoshiura K, Kinoshita A, Kikuchi T, Nakane Y, Kato N, et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012;57:338-41. https://doi.org/10.1038/jhg.2012.23
  27. Wang JL, Cao L, Li XH, Hu ZM, Li JD, Zhang JG, et al. Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 2011;134(Pt 12):3493-501. https://doi.org/10.1093/brain/awr289
  28. Dulac O. Epileptic encephalopathy. Epilepsia 2001;42 Suppl 3:23-6. https://doi.org/10.1046/j.1528-1157.2001.042suppl.3023.x
  29. Gursoy S, Ercal D. Diagnostic approach to genetic causes of earlyonset epileptic encephalopathy. J Child Neurol 2016;31:523-32. https://doi.org/10.1177/0883073815599262
  30. Scheffer IE, Berkovic SF. The genetics of human epilepsy. Trends Pharmacol Sci 2003;24:428-33. https://doi.org/10.1016/S0165-6147(03)00194-9
  31. Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 2003;20:398-407. https://doi.org/10.1097/00004691-200311000-00003
  32. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008;40:782-8. https://doi.org/10.1038/ng.150
  33. Kato M, Saitoh S, Kamei A, Shiraishi H, Ueda Y, Akasaka M, et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 2007;81:361-6. https://doi.org/10.1086/518903
  34. Molinari F, Kaminska A, Fiermonte G, Boddaert N, Raas-Rothschild A, Plouin P, et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009;76:188-94. https://doi.org/10.1111/j.1399-0004.2009.01236.x
  35. Pavone P, Striano P, Falsaperla R, Pavone L, Ruggieri M. Infantile spasms syndrome, West syndrome and related phenotypes: what we know in 2013. Brain Dev 2014;36:739-51. https://doi.org/10.1016/j.braindev.2013.10.008
  36. Swaiman KF, Ashwal S, Ferriero DM. Pediatric neurology: principles & practice. 4th ed. St. Louis (MO): Elsevier Health Sciences, 2006.
  37. Widjaja E, Go C, McCoy B, Snead OC. Neurodevelopmental outcome of infantile spasms: A systematic review and meta-analysis. Epilepsy Res 2015;109:155-62. https://doi.org/10.1016/j.eplepsyres.2014.11.012
  38. Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in infancy (Dravet syndrome). In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P, editors. Epileptic syndromes in infancy, childhood and adolescence. 4th ed. Montrouge: John Libbey, 2005:89-113.
  39. Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia 2011;52 Suppl 2:72-5.
  40. Marini C, Scheffer IE, Nabbout R, Suls A, De Jonghe P, Zara F, et al. The genetics of Dravet syndrome. Epilepsia 2011;52 Suppl 2:24-9. https://doi.org/10.1111/j.1528-1167.2011.02997.x
  41. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 2010;51:1650-8. https://doi.org/10.1111/j.1528-1167.2010.02640.x
  42. Larsen J, Carvill GL, Gardella E, Kluger G, Schmiedel G, Barisic N, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015;84:480-9. https://doi.org/10.1212/WNL.0000000000001211
  43. Nakamura K, Kato M, Osaka H, Yamashita S, Nakagawa E, Haginoya K, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013;81:992-8. https://doi.org/10.1212/WNL.0b013e3182a43e57
  44. Helbig I, Lowenstein DH. Genetics of the epilepsies: where are we and where are we going? Curr Opin Neurol 2013;26:179-85. https://doi.org/10.1097/WCO.0b013e32835ee6ff
  45. Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 2012;53:1387-98. https://doi.org/10.1111/j.1528-1167.2012.03516.x
  46. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 2015;17:444-51. https://doi.org/10.1038/gim.2014.122
  47. Chambers C, Jansen LA, Dhamija R. Review of commercially available epilepsy genetic panels. J Genet Couns 2016;25:213-7. https://doi.org/10.1007/s10897-015-9906-9
  48. Ortega-Moreno L, Giraldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcon-Morcillo C, et al. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. PLoS One 2017;12:e0188978. https://doi.org/10.1371/journal.pone.0188978
  49. Trump N, McTague A, Brittain H, Papandreou A, Meyer E, Ngoh A, et al. Improving diagnosis and broadening the phenotypes in earlyonset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 2016;53:310-7. https://doi.org/10.1136/jmedgenet-2015-103263
  50. Mercimek-Mahmutoglu S, Patel J, Cordeiro D, Hewson S, Callen D, Donner EJ, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia 2015;56:707-16. https://doi.org/10.1111/epi.12954
  51. ACMG Board of Directors. Points to consider in the clinical application of genomic sequencing. Genet Med 2012;14:759-61. https://doi.org/10.1038/gim.2012.74
  52. Epi4K Consortium; Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501:217-21. https://doi.org/10.1038/nature12439

Cited by

  1. A Child with a c.6923_6928dup (p.Arg2308_Met2309dup) SPTAN1 Mutation Associated with a Severe Early Infantile Epileptic Encephalopathy vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19071976
  2. De Novo and Inherited SETD1A Variants in Early-onset Epilepsy vol.35, pp.6, 2018, https://doi.org/10.1007/s12264-019-00400-w
  3. Epilepsy Syndromes in the First Year of Life and Usefulness of Genetic Testing for Precision Therapy vol.12, pp.7, 2018, https://doi.org/10.3390/genes12071051
  4. Extending the clinical phenotype of SPTAN1: From DEE5 to migraine, epilepsy, and subependymal heterotopias without intellectual disability vol.188, pp.1, 2018, https://doi.org/10.1002/ajmg.a.62507