Acknowledgement
Supported by : Architecture and Building Research Institute (ABRI)
References
- ACI 363R-92 (1992), State-of-the-Art Report on High-Strength Concrete, ACI Committee 363 Report, American Concrete Institute, Detroit, MI, USA.
- ACI-318 (2014), Building code requirements for reinforced concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967
- ASTM C192/C192M-16a (2016), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM International, West Conshohocken, PA, USA. URL: www.astm.org
- ASTM E119 (2008), Standard Test Methods for Fire Tests of Building Construction and Materials, American Society for Testing and Materials, Philadelphia, CA, USA.
- Castillo, C. and Durrani, A.J. (1990), "Effect of transient high temperature on high-strength concrete", ACI Mater. J., 87(1), 47-53.
- Chen, H.J., Yang, Y.C., Tang, C.W. and Peng, C.F. (2017), "Residual-Load-Bearing Capacity of High-Performance Concrete-Filled Box Columns after Fire", Sens. Mater., 29(4), 523-532.
- Ding, J. and Wang, Y.C. (2008), "Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire", J. Constr. Steel Res., 64, 1086-1102. https://doi.org/10.1016/j.jcsr.2007.09.014
- Ekmekyapar, T. (2016), "Experimental performance of concrete filled welded steel tube columns", J. Constr. Steel Res., 117, 175-184. https://doi.org/10.1016/j.jcsr.2015.10.013
- EN 1992-1-2 (2004), Eurocode 2: Design of concrete structures. Part 1-2: general rules-structural fire design, European Committee for Standardization, Brussels, Belgium.
- EN 1994-1-2 (2005), Eurocode 4: Design of composite steel and concrete structures-Part 1-2: General-Structural fire design.
- Espinos, A., Hospitaler, A. and Romero, M.L. (2009), "Fire resistance of axially loaded slender concrete filled steel tubular columns", Acta Polytechnica, 49(1), 39-43.
- Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61, 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
- Hertz, K.D. (2003), "Limits of spalling of fire-exposed concrete", Fire Safety J., 38(2), 103-116. https://doi.org/10.1016/S0379-7112(02)00051-6
- Hong, S. and Varma, A.H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Constr. Steel Res., 65(1), 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008
- Jagannath, L., Harish Kumar, N.R., Nagaraja, K.P. and Prabhakara, R. (2016), "Behaviour of normal strength concrete and high strength concrete subjected to in-plane shear", Int. J. Innov. Res. Sci. Eng. Technol., 5(7), 12242-12251.
- Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model", Steel Compos. Struct., Int. J., 21(4), 921-947. https://doi.org/10.12989/scs.2016.21.4.921
- Kim, D.K., Choi, S.M., Kim, J.H., Chung, K.S. and Park, S.H. (2005), "Experimental study on fire resistance of concrete-filled steel tube column under constant axial loads", Steel Struct., 5(4), 305-313. https://doi.org/10.12989/scs.2005.5.4.305
- Kodur, V.K.R. (1999), "Performance-based fire resistance design of concrete-filled steel columns", J. Constr. Steel Res., 51(1), 21-36. https://doi.org/10.1016/S0143-974X(99)00003-6
- Kodur, V.K.R. (2007), "Guidelines for fire resistant design of concrete-filled steel HSS columns-state-of-the-art and research needs", Steel Struct., 7, 173-182.
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Engineering Volume, Article ID 468510.
- Kodur, V.K.R. and Sultan, M.A. (2003), "Effect of temperature on thermal properties of high-strength concrete", J. Mater. Civil Eng., 5(2), 101-107.
- Kodur, V.K.R., Wang, T.C. and Cheng, F.P. (2004), "Predicting the fire resistance behavior of high strength concrete columns", Cement Concrete Compos., 26(2), 141-153. https://doi.org/10.1016/S0958-9465(03)00089-1
- Krzemien, K. and Hagera, I. (2009), "Assessment of concrete susceptibility to fire spalling: A report on the state-of-the-art in testing procedures", Procedia Eng., 108, 285-292.
- Lavanya, J. and Elangovan, R. (2017), "The structural behaviour of concrete filled steel tubular columns", Int. Res. J. Eng. Technol., 4(6), 209-215.
- Lie, T.T. and Kodur, V.K.R. (1996), "Fire resistance of steel columns filled with bar-reinforced concrete", ASCE J. Struct. Eng., 122(1), 30-36. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(30)
- Liew, J.Y.R. and Xiong, M. (2015), Design Guide for Concrete Filled Tubular Members with High Strength Materials to Eurocode 4, Research Publishing, Blk 12 Lorong Bakar Batu, #2-11, 349568, Singapore.
- Liu, Y.X., Tong, G.S. and Zhang, L. (2015), "Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section", J. Zhejiang Univ. (Eng. Sci.), 49(2), 208-217.
- Mago, N. and Hicks, S.J. (2016), "Fire behaviour of slender, highly utilized, eccentrically loaded concrete filled tubular columns", J. Constr. Steel Res., 119, 123-132. https://doi.org/10.1016/j.jcsr.2015.12.002
- Mundhada, A.R. and Pofale, A.D. (2015), "Effect of high temperature on compressive strength of concrete", IOSR J. Mech. Civil Eng., 12(1), 66-70.
- Phan, L.T. and Carino, N.J. (1998), "Review of mechanical properties of HSC at elevated temperature", J. Mater. Civil Eng., 10(1), 58-64. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(58)
- Phan, L.T. and Carino, N.J. (2002), "Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures", ACI Mater. J., 99(1), 54-66.
- Purkiss, J.A. (2007), Fire Safety Engineering Design of Structures, Butterworth-Heinemann, Elsevier, Oxoford, UK.
- Qu, X., Chen, Z., Nethercot, D.A., Gardner, L. and Theofanous, M. (2015), "Push-out tests and bond strength of rectangular CFST columns", Steel Compos. Struct., Int. J., 19(1), 21-41. https://doi.org/10.12989/scs.2015.19.1.021
- Sanjayan, G. and Stocks, L.J. (1993), "Spalling of high-strength silica fume concrete in fire", ACI Mater. J., 90(2), 170-173.
- Schaumann, P. and Kleibomer, I. (2017), "Experimental and numerical investigations of the composite behaviour in concrete-filled tubular columns with massive steel core at high temperatures", J. Struct. Fire Eng. DOI: https://doi.org/10.1108/JSFE-01-2017-0010
- Siddique, R. and Kaur, D. (2012), "Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures", J. Adv. Res.arch, 3(1), 45-51. https://doi.org/10.1016/j.jare.2011.03.004
- Song, T.Y., Han, L.H. and Yu, H.X. (2010), "Concrete filled steel tube stub columns under combined temperature and loading", J. Constr. Steel Res., 66(3), 369-384. https://doi.org/10.1016/j.jcsr.2009.10.010
- Tan, K. and Nichols, J.M. (2017), "Properties of high-strength concrete filled steel tube columns", Modern Civil Struct. Eng., 1(1), 58-77. DOI: 10.22606/mcse.2017.11005
- Tang, C.W. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., Int. J., 23(5), 611-621. https://doi.org/10.12989/scs.2017.23.5.611
- Tang, C.W. and Chen, C.Y. (2017), "Fire Resistance of Concrete-Filled Box Columns Fabricated with Different Welding Methods", Sens. Mater., 29(4), 371-377.
- Taiwan Construction and Planning Agency (2004), Design Code and Commentary for Steel Reinforced Concrete Structures, Taipei. [In Chinese]
- Tao, Z., Ghannama, M., Song, T.Y. and Han, L.H. (2016), "Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire", J. Constr. Steel Res., 118, 120-134. https://doi.org/10.1016/j.jcsr.2015.11.003
- Uy, B. (2001), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(1), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
- Wan, C.Y. and Zha, X.X. (2016), "Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading", Steel Compos. Struct., Int. J., 20(3), 571-597. https://doi.org/10.12989/scs.2016.20.3.571
- Xiong, M.X. and Liew, J.Y.R. (2016), "Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes", Mater. Des., 104, 414-427. https://doi.org/10.1016/j.matdes.2016.05.050
- Zhou, X., Mou, T., Tang, H. and Fan, B. (2017), "Experimental study on ultrahigh strength concrete filled steel tube short columns under axial load", Adv. Mater. Sci. Eng. Article ID 8410895, 9 p. DOI: https://doi.org/10.1155/2017/841089
Cited by
- Experimental and numerical investigation on post-earthquake fire behaviour of the circular concrete-filled steel tube columns vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.017