References
- Aifantis, E.C. (1999), "Strain gradient interpretation of size effects", Int. J. Fract., 95(1-4), 299. https://doi.org/10.1023/A:1018625006804
- Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412
- Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", Int. J. Solids Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006
- Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., Int. J., 55(2), 281-298. https://doi.org/10.12989/sem.2015.55.2.281
- Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., Int. J., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., Int. J., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Computat. Method. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Chronopoulos, D. (2017), "Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme", Ultrasonics, 73, 43-48. https://doi.org/10.1016/j.ultras.2016.08.020
- Combe, N., Huntzinger, J.R. and Mlayah, A. (2007), "Vibrations of quantum dots and light scattering properties: Atomistic versus continuous models", Phys. Rev. B, 76(20), 205425. https://doi.org/10.1103/PhysRevB.76.205425
- Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compo s. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
- Ebrahimi, F. and Barati, M.R. (2017b), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., Int. J., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721
- Eringen, A.C. (1967), "Theory of micropolar plates", Zeitschrift fur angewandte Mathematik und Physik ZAMP, 18(1), 12-30. https://doi.org/10.1007/BF01593891
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Farajpour, A., Yazdi, M.H., Rastgoo, A. and Mohammadi, M. (2016), "A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment", Acta Mechanica, 227(7), 1849-1867. https://doi.org/10.1007/s00707-016-1605-6
- Ghavanloo, E. and Fazelzadeh, S.A. (2013), "Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics", Nanotechnology, 24(7), 075702. https://doi.org/10.1088/0957-4484/24/7/075702
- Grundmann, M., Sturm, C., Kranert, C., Richter, S., Schmidt-Grund, R., Deparis, C. and Zuniga-Perez, J. (2016), "Optically anisotropic media: New approaches to the dielectric function, singular axes, microcavity modes and Raman scattering intensities", Physica Status Solidi (RRL)-Rapid Research Letters, 11(1).
- Gupta, S.K., Sahoo, S., Jha, P.K., Arora, A. and Azhniuk, Y. (2009), "Observation of torsional mode in CdS1- xSex nanoparticles in a borosilicate glass", J. Appl. Phys., 106(2), 024307. https://doi.org/10.1063/1.3171925
- Gurtin, M., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philosophical Magazine A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977
- Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78.
- Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Physics Letters B, 30(36), 1650421. https://doi.org/10.1142/S0217984916504212
- Karami, B., Janghorban, M. and Tounsi, A. (2017a), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374.
- Karami, B., Shahsavari, D. and Janghorban, M. (2017b), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 1-11.
- Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018b), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004
- Karami, B., Shahsavari, D. and Li, L. (2018c), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E; Low-dimens. Syst. Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020
- Karami, B., Shahsavari, D. and Li, L. (2018d), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stress., 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018e), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C; Journal of Mechanical Engineering Science.
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
- Li, L., Hu, Y. and Ling, L. (2016a), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E; Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Li, L., Li, X. and Hu, Y. (2016b), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
- Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Mankad, V., Mishra, K., Gupta, S.K., Ravindran, T. and Jha, P.K. (2012), "Low frequency Raman scattering from confined acoustic phonons in freestanding silver nanoparticles", Vibrational Spectroscopy, 61, 183-187. https://doi.org/10.1016/j.vibspec.2012.02.004
- Mehralian, F., Beni, Y.T. and Zeverdejani, M.K. (2017), "Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations", Physica B; Condensed Matter.
- Mock, A., Korlacki, R., Knight, S. and Schubert, M. (2017), "Anisotropy, phonon modes, and lattice anharmonicity from dielectric function tensor analysis of monoclinic cadmium tungstate", arXiv preprint arXiv;1701.00813. https://doi.org/10.1103/PhysRevB.95.165202
- Mousavi, S., Reddy, J. and Romanoff, J. (2016), "Analysis of anisotropic gradient elastic shear deformable plates", Acta Mechanica, 227(12), 3639-3656. https://doi.org/10.1007/s00707-016-1689-z
- Nami, M.R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012
- Ng, M.-Y. and Chang, Y.-C. (2011), "Laser-induced breathing modes in metallic nanoparticles: a symmetric molecular dynamics study", J. Chem. Phys., 134(9), 094116. https://doi.org/10.1063/1.3563803
- Portales, H., Saviot, L., Duval, E., Fujii, M., Hayashi, S., Del Fatti, N. and Vallee, F. (2001), "Resonant Raman scattering by breathing modes of metal nanoparticles", J. Chem. Phys., 115(8), 3444-3447. https://doi.org/10.1063/1.1396817
- Ruijgrok, P.V., Zijlstra, P., Tchebotareva, A.L. and Orrit, M. (2012), "Damping of acoustic vibrations of single gold nanoparticles optically trapped in water", Nano Letters, 12(2), 1063-1069. https://doi.org/10.1021/nl204311q
- Sadd, M.H. (2009), Elasticity; Theory, Applications, and Numerics, Academic Press.
- Sahmani, S. and Aghdam, M. (2017), "Nonlinear instability of axially loaded functionally graded multilayer graphene plateletreinforced nanoshells based on nonlocal strain gradient elasticity theory", Int. J. Mech. Sci., 131, 95-106.
- Saviot, L., Murray, D.B. and De Lucas, M.D.C.M. (2004), "Vibrations of free and embedded anisotropic elastic spheres: Application to low-frequency Raman scattering of silicon nanoparticles in silica", Phys. Rev. B, 69(11), 113402. https://doi.org/10.1103/PhysRevB.69.113402
- Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861. https://doi.org/10.1007/s40430-017-0863-0
- Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89
- Shahsavari, D., Karami, B. and Mansouri, S. (2018a), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Solids, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
- Shen, J., Li, C., Fan, X. and Jung, C. (2017), "Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects", Smart Struct. Syst., Int. J., 19(1), 105-113. https://doi.org/10.12989/sss.2017.19.1.105
- Shukla, A. and Kumar, V. (2011), "Low-frequency Raman scattering from silicon nanostructures", J. Appl. Phys., 110(6), 064317. https://doi.org/10.1063/1.3633235
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013
- Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., Int. J., 63(3), 401-415.
- Srinivas, S. and Rao, A. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates", Int. J. Solids Struct.res, 6(11), 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
- Teodosiu, C. (1982), The Elastic Field of Point Defects, Springer.
- Voisin, C., Del Fatti, N., Christofilos, D. and Vallee, F. (2000), "Time-resolved investigation of the vibrational dynamics of metal nanoparticles", Appl. Surf. Sci., 164(1), 131-139. https://doi.org/10.1016/S0169-4332(00)00347-0
- Yang, F., Chong, A., Lam, D.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zbib, H. and Aifantis, E. (2003), "Size effects and length scales in gradient plasticity and dislocation dynamics", Scripta Materialia, 48(2), 155-160. https://doi.org/10.1016/S1359-6462(02)00342-1
- Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to timedependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909
- Zhu, X. and Li, L. (2017a), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
- Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
- Zhu, X. and Li, L. (2017c), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003
- Zhu, X. and Li, L. (2017d), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Ziane, N., Meftah, S.A., Belhadj, H.A. and Tounsi, A. (2013), "Free vibration analysis of thin and thick-walled FGM box beams", Int. J. Mech. Sci., 66, 273-282. https://doi.org/10.1016/j.ijmecsci.2012.12.001
Cited by
- Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals vol.5, pp.9, 2018, https://doi.org/10.1088/2053-1591/aad4c3
- A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
- Nonlocal Thermal and Mechanical Buckling of Nonlinear Orthotropic Viscoelastic Nanoplates Embedded in a Visco-Pasternak Medium vol.10, pp.8, 2018, https://doi.org/10.1142/s1758825118500862
- On nonlinear bending behavior of FG porous curved nanotubes vol.135, pp.None, 2018, https://doi.org/10.1016/j.ijengsci.2018.11.005
- Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2018, https://doi.org/10.12989/sem.2019.70.4.407
- A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2018, https://doi.org/10.12989/scs.2019.33.5.699
- Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.717
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2018, https://doi.org/10.12989/was.2019.29.6.371
- Dynamic Stress around a Cylindrical Nano-Inclusion with an Interface in a Right-Angle Plane under SH-Wave vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/9717386
- Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.261
- Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method vol.34, pp.3, 2020, https://doi.org/10.12989/scs.2020.34.3.361
- A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
- Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory vol.91, pp.1, 2018, https://doi.org/10.1007/s00419-020-01771-7
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2018, https://doi.org/10.12989/scs.2021.38.1.033
- Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2018, https://doi.org/10.12989/scs.2021.38.2.141
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.533
- Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis vol.11, pp.3, 2018, https://doi.org/10.12989/acc.2021.11.3.255
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.263
- Dispersion of waves characteristics of laminated composite nanoplate vol.40, pp.3, 2018, https://doi.org/10.12989/scs.2021.40.3.355
- On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389