DOI QR코드

DOI QR Code

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh (Department of Architectural Engineering, Sejong University) ;
  • Shin, Soomi (Research Institute of Industrial Technology, Pusan National University) ;
  • Lee, Dongkyu (Department of Architectural Engineering, Sejong University)
  • 투고 : 2017.09.23
  • 심사 : 2018.02.22
  • 발행 : 2018.04.25

초록

This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

키워드

과제정보

연구 과제 주관 기관 : NRF(National Research Foundation of Korea)

참고문헌

  1. Alonso, C., Ansola, R. and Querin, O.M. (2014), "Topology synthesis of multi-material compliant mechanisms with a Sequential Element Rejection and Admission method", Finite Elem. Anal. Des., 85, 11-19. https://doi.org/10.1016/j.finel.2013.11.006
  2. Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of design for continuum structures with crack", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088
  3. Bendsoe, M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Methods Appl. Mech. Eng., 71(2), 197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  4. Bendsoe, M.P. and Sigmund, O. (2004), Topology Optimization: Theory, Methods, and Applications, SpringerVerlag Berlin Heidelberg, New York, NY, USA.
  5. Belblidia, F., Lee, J.E.B., Rechak, S. and Hinton, E. (2001), "Topology optimization of plate structures using a single- or three-layered artificial material model", Adv. Eng. Software, 32(2), 159-168. https://doi.org/10.1016/S0045-7949(00)00141-3
  6. Blasques, J.P. and Stolpe, M. (2012), "Multi-material topology optimization of laminated composite beam cross sections", Mater. Des., 94(11), 3278-3289.
  7. Doan, Q.H. and Lee, D. (2017), "Optimum topology design of multi-material structures with non-spurious buckling constraints", Adv. Eng. Software, 114, 110-120. https://doi.org/10.1016/j.advengsoft.2017.06.002
  8. Du, Y., Li, H., Luo, Z. and Tian, Q. (2017), "Topological design optimization of lattice structures to maximize shear stiffness", Advances in Engineering Software, 112, 211-221. https://doi.org/10.1016/j.advengsoft.2017.04.011
  9. Goo, S., Wang, S., Hyun, J. and Jung, J. (2016), "Topology optimization of thin plate structures with bending stress constraints", Comput. Struct., 175, 134-143. https://doi.org/10.1016/j.compstruc.2016.07.006
  10. Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
  11. Lee, D.K. and Shin, S.M. (2015), "Optimising node density-based structural material topology using eigenvalue of thin steel and concrete plates", Mater. Res. Innov., 19, 1241-1245. https://doi.org/10.1179/1432891715Z.0000000001478
  12. Lee, D. and Shin, S. (2016), "Evaluation of Optimized Topology Design of Cross-Formed Structures with a Negative Poisson's Ratio", Iran. J. Sci. Technol., Transact. Civil Eng., 40(2), 109-120. https://doi.org/10.1007/s40996-016-0016-1
  13. Lee, D., Shin, S., Lee, J. and Lee, K. (2015), "Layout evaluation of building outrigger truss by using material topology optimization", Steel Compos. Struct., Int. J., 19(2), 263-275. https://doi.org/10.12989/scs.2015.19.2.263
  14. Lee, D., Lee, J. and Doan, Q.H. (2017), "Multi-layered UL700 arch-grid module with inelastic buckling for localized reinforcement of soft ground", Adv. Eng. Software, 110, 14-25. https://doi.org/10.1016/j.advengsoft.2017.03.009
  15. Liu, Q., Chan, R. and Huang, X. (2016a), "Concurrent topology optimization of macrostructures and material microstructures for natural frequency", Mater. Des., 106, 380-390. https://doi.org/10.1016/j.matdes.2016.05.115
  16. Liu, P., Luo, Y. and Kang, Z. (2016b), "Multi-material topology optimization considering interface behavior via XFEM and level set method", Computer Methods in Applied Mechanics and Engineering, 308, 113-133. https://doi.org/10.1016/j.cma.2016.05.016
  17. Qiao, S., Han, X., Zhou, K. and Ji, J. (2016), "Seismic analysis of steel structure with brace configuration using topology optimization", Steel Compos. Struct., Int. J., 21(3), 501-515. https://doi.org/10.12989/scs.2016.21.3.501
  18. Roodsarabi, M., Khatibinia, M. and Sarafrazi, S.R. (2016), "Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization", Steel Compos. Struct., Int. J., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  19. Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134. https://doi.org/10.1177/0731684407082627
  20. Tavakoli, R. and Mohseni, S.M. (2014), "Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation", Struct. Multidiscipl. Optimiz., 49(4), 621-642. https://doi.org/10.1007/s00158-013-0999-1
  21. Vatanabe, S.L., Lippi, T.N., de Lima, C.R., Paulino, G.H. and Silva, E.C. (2016), "Topology optimization with manufacturing constraints: A unified projection-based approach", Adv. Eng. Software, 100, 97-112. https://doi.org/10.1016/j.advengsoft.2016.07.002
  22. Xia, Q. and Wang, M.Y. (2008), "Topology optimization of thermoelastic structures using level set method", Computat. Mech., 42(6), 837. https://doi.org/10.1007/s00466-008-0287-x
  23. Yan, K., Cheng, G. and Wang, B.P. (2016), "Topology optimization of plate structures subject to initial excitations for minimum dynamic performance index", Struct. Multidiscipl. Optimiz., 53(3), 623-633. https://doi.org/10.1007/s00158-015-1350-9
  24. Yun, K.S. and Youn, S.K. (2017), "Multi-material topology optimization of viscoelastically damped structures under timedependent loading", Finite Elem. Anal. Des., 123, 9-18. https://doi.org/10.1016/j.finel.2016.09.006
  25. Zhou, S. and Wang, M.Y. (2006), "3D multi-material structural topology optimization with the generalized Cahn-Hilliard equations", Comput. Model. Eng. Sci., 16(2), 83-101.
  26. Zhou, S. and Wang, M.Y. (2007), "Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition", Struct. Multidiscipl. Optimiz., 33(2), 89.
  27. Zienkiewicz, O.C. (2000), The Finite Element Method: Solid Mechanics, Butterworth-Heinemann, United Kingdom.
  28. Zienkiewicz, O.C. and Taylor, R.L. (2013), The Finite Element Method: Its Basis and Fundamentals, ButterworthHeinemann, United Kingdom.

피인용 문헌

  1. Topology optimization of thermal structure for isotropic and anisotropic materials using the element-free Galerkin method vol.52, pp.7, 2018, https://doi.org/10.1080/0305215x.2019.1636979
  2. Optimization of a composite beam for high-speed railroads vol.37, pp.4, 2018, https://doi.org/10.12989/scs.2020.37.4.493
  3. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2018, https://doi.org/10.12989/csm.2020.9.6.499
  4. Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method vol.77, pp.5, 2018, https://doi.org/10.12989/sem.2021.77.5.613