DOI QR코드

DOI QR Code

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Received : 2017.10.12
  • Accepted : 2018.02.07
  • Published : 2018.04.25

Abstract

In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Keywords

References

  1. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  2. Ahouel, M., Houari, M.S.A., Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589. https://doi.org/10.12989/SCS.2017.24.5.579
  4. Ansari, R., Shojaei, M.F., Shahabodini, A. and Bazdid-Vahdati, M. (2015), "Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach", Compos. Struct., 131, 753-764. https://doi.org/10.1016/j.compstruct.2015.06.027
  5. Arani, G.A., Haghparast, E. and Zarei, H.B. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529
  6. Arani, A.G., Kolahchi, R. and Afshar, H.G. (2015), "Dynamic analysis of embedded PVDF nanoplate subjected to a moving nanoparticle on an arbitrary elliptical path", J. Brazil. Soc. Mech. Sci. Eng., 37(3), 973-986. https://doi.org/10.1007/s40430-014-0215-2
  7. Arefi, M. (2014), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/SCS.2015.18.3.659
  8. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/SEM.2017.64.5.527
  9. Barati, M.R., Zenkour, A.M. and Shahverdi, H. (2016), "Thermomechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Compos. Struct., 141, 203-212. https://doi.org/10.1016/j.compstruct.2016.01.056
  10. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  12. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  13. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  14. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  15. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  16. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  17. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  18. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  19. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  20. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  21. Bounouara, F., Benrahou, K.H. Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  22. Chaht, L., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O., and Mahmoud, M. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  23. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  24. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 5(11), 671-690.
  25. El-Wazery, M.S. and El-Desouky, A.R. (2015), "A review on functionally graded ceramic-metal materials", J. Mater. Environ. Sci., 6(5), 1369-1376.
  26. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  27. Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Fin. Elem. Analy. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005
  28. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/GAE.2017.13.3.385
  29. Ghafoori, E. and Asghari, M. (2010), "Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory", Compos. Struct., 92(8), 1865-1876. https://doi.org/10.1016/j.compstruct.2010.01.011
  30. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  31. Hashemi, S.H. and Khaniki, H.B. (2016a), "Free vibration analysis of functionally graded materials non-uniform beams", Int. J. Eng.-Trans. C: Asp., 29(12), 1734.
  32. Hashemi, S.H. and Khaniki, H.B. (2016b), "Analytical solution for free vibration of a variable cross-section nonlocal nanobeam", Int. J. Eng.-Trans. B: Appl., 29(5), 688-696.
  33. Hashemi, S.H. and Khaniki, H.B. (2017a), "Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle", J. Mech., 33(5), 559-575. https://doi.org/10.1017/jmech.2016.91
  34. Hashemi, S.H. and Khaniki, H.B. (2017b), "Dynamic response of multiple nanobeam system under a moving nanoparticle", Alexandr. Eng. J.
  35. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  36. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2017), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 23(3), 473-495. https://doi.org/10.12989/scs.2017.23.4.473
  37. Hosseini Hashemi, S. and Bakhshi Khaniki, H. (2017), "Vibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution", Int. J. Nano Dimens., 8(1), 70-81.
  38. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  39. Jung, W.Y. and Hn, S.C. (2013), "Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory", Math. Probl. Eng., 1-10.
  40. Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Fin. Elem. Analy. Des., 29(3), 259-273. https://doi.org/10.1016/S0168-874X(98)00024-9
  41. Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci., 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010
  42. Khaniki, H.B. and Hashemi, S.H. (2017a), "Free vibration analysis of nonuniform microbeams based on modified couple stress theory: An analytical solution", Int. J. Eng.-Trans. B: Appl., 30(2), 311-320.
  43. Khaniki, H.B. and Hosseini-Hashemi, S. (2017b), "Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and generalized differential quadrature method", Mater. Res. Expr., 4(6), 065003. https://doi.org/10.1088/2053-1591/aa7111
  44. Khaniki, H.B. and Hosseini-Hashemi, S. (2017c), "Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method", Eur. Phys. J. Plus, 132(11), 500. https://doi.org/10.1140/epjp/i2017-11757-4
  45. Khaniki, H.B. and Hosseini-Hashemi, S. (2017d), "The sizedependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory", Eur. Phys. J. Plus, 132(5), 1-18. https://doi.org/10.1140/epjp/i2017-11280-8
  46. Khaniki, H.B. and Hosseini-Hashemi, S. (2017e), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", Int. J. Eng. Sci., 115, 51-72. https://doi.org/10.1016/j.ijengsci.2017.02.005
  47. Khaniki, H.B., Hosseini-Hashemi, S. and Nezamabadi, A. (2017), "Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method", Alexandr. Eng. J.
  48. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  49. Kiani, K. (2011a), "Small-scale effect on the vibration of thin nanoplates subjected to a moving nanoparticle via nonlocal continuum theory", J. Sound Vibr., 330(20), 4896-4914. https://doi.org/10.1016/j.jsv.2011.03.033
  50. Kiani, K. (2011b), "Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: Theoretical formulations", Phys. E: Low-Dimens. Syst. Nanostruct., 44(1), 229-248. https://doi.org/10.1016/j.physe.2011.08.020
  51. Kiani, K. (2013), "Vibrations of biaxially tensioned-embedded nanoplates for nanoparticle delivery", Ind. J. Sci. Technol., 6(7), 4894-4902.
  52. Lomakin, V.A. (1966), "On the theory of deformation of microinhomogeneous bodies and its relation with the couple stress theory of elasticity", J. Appl. Math. Mech., 30(5), 1035-1042. https://doi.org/10.1016/0021-8928(66)90006-2
  53. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  54. Mahmoud, S.R. and Tounsi, A. (2017), "A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates", Steel Compos. Struct., 24(5), 569-578. https://doi.org/10.12989/SCS.2017.24.5.569
  55. Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi, A. and El Abbes, A.B. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., 23(3), 317-330. https://doi.org/10.12989/scs.2017.23.3.317
  56. Meirovitch, L. (1967), Analytical Methods in Vibrations, Macmillan, New York, U.S.A.
  57. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  58. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  59. Mindlin, R.D. and Eshel, N.N. (1968), "On first strain-gradient theories in linear elasticity", Int. J. Sol. Struct., 4(1), 109-124. https://doi.org/10.1016/0020-7683(68)90036-X
  60. Moradi-Dastjerdi, R. and Momeni, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277
  61. Mouffoki, A., Adda Bedia, E.A., Houari, A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  62. Nami, M.R. and Janghorban, M. (2015), "Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory", J. Mech. Sci. Technol., 29(6), 2423-2426. https://doi.org/10.1007/s12206-015-0539-6
  63. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P.A., Nguyen-Xuan, H. and Vo, T.P. (2017), "A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory", Comput. Meth. Appl. Mech. Eng., 313, 904-940. https://doi.org/10.1016/j.cma.2016.10.002
  64. Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2016), "Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity", Compos. Struct., 153, 428-441. https://doi.org/10.1016/j.compstruct.2016.06.045
  65. Rajasekaran, S. and Khaniki, H.B. (2017), "Bending, buckling and vibration of small-scale tapered beams", Int. J. Eng. Sci., 120, 172-188. https://doi.org/10.1016/j.ijengsci.2017.08.005
  66. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
  67. Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015), "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
  68. Sallai, B., Hadji, L., Daouadji, T.H. and Adda Bedia, E.A. (2015), "Analytical solution for bending analysis of functionally graded beam", Steel Compos. Struct., 19(4), 829-841. https://doi.org/10.12989/scs.2015.19.4.829
  69. Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Expr., 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89
  70. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 1-13.
  71. Sola, A., Bellucci, D. and Cannillo, V. (2016), "Functionally graded materials for orthopedic applications-an update on design and manufacturing", Biotechnol. Adv., 34(5), 504-531. https://doi.org/10.1016/j.biotechadv.2015.12.013
  72. Taheri, M.R. and Ting, E.C. (1989), "Dynamic response of plate to moving loads: Structural impedance method", Comput. Struct., 33(6), 1379-1393. https://doi.org/10.1016/0045-7949(89)90478-1
  73. Taheri, M.R. (1987), "Dynamic response of plates to moving loads, structural impedance and finite element methods", Ph.D. Dissertation, Purdue University, U.S.A.
  74. Tahouneh, V. (2017), "Using modified Halpin-Tsai approach for vibrational analysis of thick functionally graded multi-walled carbon nanotube plates", Steel Compos. Struct., 23(6), 657-668. https://doi.org/10.12989/SCS.2017.23.6.657
  75. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  76. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  77. Yoshida, D.M. and Weaver, W. (1971), "Finite element analysis of beams and plates with moving loads", Publ. Int. Assoc. Brid. Struct. Eng., 31(1), 179-195.
  78. Uysal, M.U. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., 21(4), 849-862. https://doi.org/10.12989/scs.2016.21.4.849
  79. Venancio-Filho, F. (1966), "Dynamic influence lines of beams and frames", ASCE J. Struct. Div., 92, 371-385.
  80. Xiong, Q.L. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. https://doi.org/10.12989/SCS.2017.25.2.187
  81. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  82. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  83. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34 24-34. https://doi.org/10.1016/j.ast.2014.02.001