DOI QR코드

DOI QR Code

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman (Department of Structural Engineering, University of Zagazig) ;
  • Maaly, Hassan M. (Department of Structural Engineering, University of Zagazig) ;
  • Hamdy, Osman (Department of Structural Engineering, University of Zagazig)
  • Received : 2017.12.01
  • Accepted : 2018.03.09
  • Published : 2018.04.25

Abstract

This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Keywords

References

  1. Abdalla, K.M. and Chen, W.F. (1995), "Expanded database of semi-rigid steel connections" ,Comput. Struct., 56(4), 553-564. https://doi.org/10.1016/0045-7949(94)00558-K
  2. Alqedra, M., Khalifa, A. and Arafa, M. (2015), "An intelligent tuned harmony search algorithm for optimum design of steel framed structures to AISC-LRFD", Adv. Res., 4(6), 421-440. https://doi.org/10.9734/AIR/2015/16831
  3. American Institute of Steel Construction (2016), ANSI/AISC 360-16. Specification for Structural Steel Buildings.
  4. Arafa, M., Khalifa, A. and Alqedra, M. (2015), "Design optimization of semi-rigidly connected steel frames using harmony search algorithm", 2(2).
  5. Artar, M. (2016), "Optimum design of braced steel frames via teaching learning based optimization", Struct. Eng. Mech., 22(4), 733-744.
  6. Artar, M. and Dalotlu, A.T. (2015), "Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm", Steel Compos. Struct., 19(4), 1035-1053. https://doi.org/10.12989/scs.2015.19.4.1035
  7. Artar, M. and Daloglu, A. (2015), Optimum Design of Steel Space Frames with Composite Beams Using Genetic Algorithm, 503-519. https://doi.org/10.12989/scs.2015.19.2.503
  8. Artar, M. and Daloglu, A.T. (2016), "Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms", Neur. Comput. Appl., 1-12.
  9. Chajes, A. and Churchill, J.E. (1987), "Nonlinear frame analysis by finite element methods", J. Struct. Eng., 113(6), 1221-1235. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1221)
  10. Chisala, M.L. (1999), "Modelling M-$\phi$ curves for standard beamto-column connections", Eng. Struct., 21(12), 1066-1075. https://doi.org/10.1016/S0141-0296(98)00033-9
  11. Degertekin, S.O. and Hayalioglu, M.S. (2004), "Design of nonlinear semi-rigid steel frames with semi-rigid column bases", Electr. J. Struct. Eng., 4(October), 1-16.
  12. Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semirigid connections and column bases", Struct. Multidiscipl. Optim., 42(5), 755-768. https://doi.org/10.1007/s00158-010-0533-7
  13. Dhillon, B.S. and O'Malley III, J.W. (1999), "Interactive design of semirigid steel frames", J. Struct. Eng., 125(5), 556-564. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(556)
  14. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civil Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  15. Goldberg, D.E. (1989), Genetic Algorithms in Search Optimization, and Machine Learning, 432.
  16. Hadidi, A. and Rafiee, A. (2014), "Harmony search based, improved particle swarm optimizer for minimum cost design of semi-rigid steel frames", Struct. Eng. Mech., 50(3), 323-347. https://doi.org/10.12989/sem.2014.50.3.323
  17. Hadidi, A. and Rafiee, A. (2015), "A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames", Int. J. Steel Struct., 15(1), 89-102. https://doi.org/10.1007/s13296-015-3006-4
  18. Hayalioglu, M.S. and Degertekin, S.O. (2004), "Design of nonlinear steel frames for stress and displacement constraints with semi-rigid connections via genetic optimization", Struct. Multidiscipl. Optim., 27(4), 259-271. https://doi.org/10.1007/s00158-003-0357-9
  19. Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83, 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
  20. Hensman, J.S. and Nethercot, D.A. (2001), "Numerical study of unbraced composite frames: Generation of data to validate use of the wind moment method of design", J. Constr. Steel Res., 57(7), 791-809. https://doi.org/10.1016/S0143-974X(01)00008-6
  21. Kim, J.H., Ghaboussi, J. and Elnashai, A.S. (2010), "Mechanical and informational modeling of steel beam-to-column connections", Eng. Struct., 32(2), 449-458. https://doi.org/10.1016/j.engstruct.2009.10.007
  22. Sedat, M.S. and Degertekin, H.G. (2004), "Design of semi-rigid planar steel frames according to turkish steel design code", J. Eng. Nat. Sci., (412), 101-116.
  23. Rafiee, A., Talatahari, S. and Hadidi, A. (2013), "Optimum design of steel frames with semi-rigid connections using big bang-big crunch method", Steel Compos. Struct., 14(5), 431-451. https://doi.org/10.12989/scs.2013.14.5.431
  24. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2012), "Teachinglearning-based optimization: An optimization method for continuous non-linear large scale problems", Informat. Sci., 183(1), 1-15. https://doi.org/10.1016/j.ins.2011.08.006
  25. Wu, Z., Zhang, S. and Jiang, S.F. (2012), "Simulation of tensile bolts in finite element modeling of semi-rigid beam-to-column connections", Int. J. Steel Struct., 12(3), 339-350. https://doi.org/10.1007/s13296-012-3004-8
  26. Xu, L. and Grierson, D.E. (1993), "Computer automated design of semirigid steel frameworks", J. Struct. Eng., 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)
  27. Yassami, M. and Ashtari, P. (2015), "Using fuzzy genetic algorithm for the weight optimization of steel frames with semirigid connections", Int. J. Steel Struct., 15(1), 63-73. https://doi.org/10.1007/s13296-014-1105-2

Cited by

  1. Performance evaluation of composite moment-frame structures with seismic damage mitigation systems using wavelet analyses vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.201
  2. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795