과제정보
연구 과제 주관 기관 : CAPES, FAPERJ, CNPq
참고문헌
- Ayorinde, E.O. and Warburton, G.B. (1980), "Minimizing structural vibrations with absorbers", Earthq. Eng. Struct. Dyn., 8(3), 219-236. https://doi.org/10.1002/eqe.4290080303
- Babitsky, V.I. (2013), Theory of Vibro-Impact Systems and Applications, Springer Science & Business Media, Leicestershire, U.K.
- Bapat, C.N. and Sankar, S. (1985), "Single unit impact damper in free and forced vibration", J. Sound Vibr., 99(1), 85-94. https://doi.org/10.1016/0022-460X(85)90446-8
- Battista, R.C., Rodrigues, R.S. and Pfeil, M.S. (2003), "Dynamic behavior and stability of transmission line towers under wind forces", J. Wind Eng. Industr. Aerodyn., 91, 1051-1067. https://doi.org/10.1016/S0167-6105(03)00052-7
- Belyakov, A.O., Seyranian, A.P. and Luongo, A. (2009), "Dynamics of the pendulum with periodically varying length", Phys. D: Nonlin. Phenom., 238(16), 1589-1597. https://doi.org/10.1016/j.physd.2009.04.015
- Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vibr., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019
- Collette, F.S. (1998), "A combined tuned absorber and pendulum impact damper under random excitation", J. Sound Vibr., 216(2), 199-213. https://doi.org/10.1006/jsvi.1997.1666
- Constantinou, M.C., Soong, T.T. and Dargush, G.F. (1998), Passive Energy Dissipation Systems for Structural Design and Retrofit, Multidisciplinary Center for Earthquake Engineering Research, New York, U.S.A.
- De Angelis, M., Perno, S. and Reggio, A. (2012), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. Dyn., 41, 41-60. https://doi.org/10.1002/eqe.1117
- Den Hartog, J.P. (1956), Mechanical Vibration, McGraw-Hill, New York, U.S.A.
- Duncan, M.R., Wassgren, C.R. and Krousgrill, C.M. (2005), "The damping performance of a single particle impact damper", J. Sound Vibr., 286(1), 123-144. https://doi.org/10.1016/j.jsv.2004.09.028
- Ertas, A. (1996), "Pendulum as vibration absorber for flexible structures: Experiments and theory", J. Vibr. Acoust., 118, 559.
- Fallahpasand, S., Dardel, M., Pashaei, M.H. and Mohammadi Daniali, H.R. (2015), "Investigation and optimization of nonlinear pendulum vibration absorber for horizontal vibration suppression of damped system", Struct. Des. Tall Spec. Build., 24, 873-893. https://doi.org/10.1002/tal.1216
- Gerges, R.R. and Vickery, B.J. (2005), "Optimum design of pendulum-type tuned mass dampers", Struct. Des. Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273
- Gottlieb, H.P.W. (1997), "Isodynamical tracks and potentials", J. Sound Vibr., 199(4), 667-678. https://doi.org/10.1006/jsvi.1996.0659
- Gottwald, J.A., Virgin, L.N. and Dowell, E.H. (1992), "Experimental mimicry of Duffing's equation", J. Sound Vibr., 158(3), 447-467. https://doi.org/10.1016/0022-460X(92)90419-X
- Gus'kov, A.M., Panovko, G.Y. and Van Bin, C. (2008), "Analysis of the dynamics of a pendulum vibration absorber", J. Mach. Manufact. Reliab., 37(4), 321-329. https://doi.org/10.3103/S105261880804002X
- Hoang, N., Fujino, Y. and Warnitchai, P. (2008), "Optimal tuned mass damper for seismic applications and practical design formulas", Eng. Struct., 30(3), 707-715. https://doi.org/10.1016/j.engstruct.2007.05.007
- Jankowski, R., Kujawa, M. and Szymczak, C. (2004), "Reduction of steel chimney vibrations with a pendulum damper", Task Quarter., 8(1), 71-78.
- Kaynia, A.M., Biggs, J.M. and Veneziano, D. (1981), "Seismic effectiveness of tuned mass dampers", J. Struct. Div., 107(8), 1465-1484.
- Kelly, J.M. (1986), "Aseismic base isolation: Review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0
- Korenev, B.G. and Reznikov, L.M. (1993), Dynamic Vibration Absorbers, Wiley & Sons, New York, U.S.A.
- Kourakis, I. (2007), "Structural systems and tuned mass dampers of super-tall buildings: Case study of Taipei 101", Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts, U.S.A.
- Lacarbonara, W. and Ballerini, S. (2009), "Vibration mitigation of guyed masts via tuned pendulum dampers", Struct. Eng. Mech., 32(4), 517-529. https://doi.org/10.12989/sem.2009.32.4.517
- Legeza, V.P. (2013), "Efficiency of a vibroprotection system with an isochronous roller damper", Mech. Sol., 48(2), 168-177. https://doi.org/10.3103/S0025654413020088
- Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C. and Wu, C.F. (2010), "Dynamic behavior of Taipei 101 tower: Field measurement and numerical analysis", J. Struct. Eng., 137(1), 143-155.
- Lin, J.L., Tsai, K.C. and Miranda, E. (2009), "Seismic history analysis of asymmetric buildings with soil-structure interaction", J. Struct. Eng., 135(2), 101-112. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(101)
- Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621
- Matta, E. (2015), "Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective", Earthq. Struct., 9(1), 73-91. https://doi.org/10.12989/eas.2015.9.1.073
- Matta, E. and De Stefano, A. (2009b), "Seismic performance of pendulum and translational roof-garden TMDs", Mech. Syst. Sign. Proc., 23(3), 908-921. https://doi.org/10.1016/j.ymssp.2008.07.007
- Matta, E. and De Stefano, A. (2009a), "Robust design of massuncertain rolling-pendulum TMDs for the seismic protection of buildings", Mech. Syst. Sign. Proc., 23(1), 127-147. https://doi.org/10.1016/j.ymssp.2007.08.012
- Nagase, T. and Hisatoku. T. (1992), "Tuned pendulum mass damper installed in crystal tower", Struct. Des. Tall Spec. Build., 1(1), 35-56. https://doi.org/10.1002/tal.4320010105
- Naprstek, J. and Fischer, C. (2009), "Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper", Comput. Struct., 87(19), 1204-1215. https://doi.org/10.1016/j.compstruc.2008.11.015
- Orlando, D. and Goncalves, P.B. (2013), "Hybrid nonlinear control of a tall tower with a pendulum absorber", Struct. Eng. Mech., 46(2), 153-177. https://doi.org/10.12989/sem.2013.46.2.153
- Parker, T.S. and Chua, L. (2012), Practical Numerical Algorithms for Chaotic Systems, Springer Science & Business Media.
- Pasala, D.T.R. and Nagarajaiah, S. (2014), "Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time", Smart Struct. Syst., 13(2), 203-217. https://doi.org/10.12989/sss.2014.13.2.203
- Pasquetti, E. and Goncalves, P.B. (2011), "Application of Taylor expansions and symmetry concepts to oscillators with nonpolynomial nonlinearities", Int. J. Comput. Appl. Math., 6(1), 57-70.
- Petti, L., Giannattasio, G., De Iuliis, M. and Palazzo, B. (2010), "Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy", Smart Struct. Syst., 6(1), 57-72. https://doi.org/10.12989/sss.2010.6.1.057
- Pfeiffer, F., Foerg, M. and Ulbrich, H. (2006), "Numerical aspects of non-smooth multibody dynamics", Comput. Meth. Appl. Mech. Eng., 195(50), 6891-6908. https://doi.org/10.1016/j.cma.2005.08.012
- Pinheiro, M.A.S. (1997), "Non-linear pendulum absorber of lateral vibrations in slender towers", M.Sc. Dissertation, COPPE/UFRJ, Rio de Janeiro.
- Pinkaew, T., Lukkunaprasit, P. and Chatupote, P. (2003), "Seismic effectiveness of tuned mass dampers for damage reduction of structures", Eng. Struct., 25(1), 39-46. https://doi.org/10.1016/S0141-0296(02)00115-3
- Pirner, M. (2002), "Actual behaviour of a ball vibration absorber", J. Wind Eng. Industr. Aerodyn., 90(8), 987-1005. https://doi.org/10.1016/S0167-6105(02)00215-5
- Pombo, J. and Ambrosio, J. (2007), "Modelling tracks for roller coaster dynamics", Int. J. Vehicl. Des., 45(4), 470-500. https://doi.org/10.1504/IJVD.2007.014916
- Pombo, J. and Ambrosio, J.A. (2003), "General spatial curve joint for rail guided vehicles: Kinematics and dynamics", Multib. Syst. Dyn., 9(3), 237-264. https://doi.org/10.1023/A:1022961825986
- Reynolds, O. (1879), "On rolling-friction", Philosophical Transactions of the Royal Society of London, 166, 155-174.
- Roffel, A.J., Lourenco, R., Narasimhan, S. and Yarusevych, S. (2010), "Adaptive compensation for detuning in pendulum tuned mass dampers", J. Struct. Eng., 137(2), 242-251.
- Shaw, S.W. and Haddow, A.G. (1992), "On 'roller-coaster' experiments for nonlinear oscillators", Nonlin. Dyn., 3(5), 375-384. https://doi.org/10.1007/BF00045073
- Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York, U.S.A.
- Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Tandl, M., Kecskemethy, A. and Schneider, M. (2007), "A design environment for industrial roller coasters", Proceedings of the ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics.
- Villaverde, R. (2009), Fundamental Concepts of Earthquake Engineering, CRC Press Inc., New York, U.S.A.
- Vyas, A. and Bajaj, A.K. (2001), "Dynamics of autoparametric vibration absorbers using multiple pendulums", J. Sound Vibr., 246(1), 115-135. https://doi.org/10.1006/jsvi.2001.3616
- Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
- Xiang, P. and Nishitani, A. (2014), "Optimum design for more effective tuned mass damper system and its application to baseisolated buildings", Struct. Contr. Health Monitor., 21(1), 98-114. https://doi.org/10.1002/stc.1556