DOI QR코드

DOI QR Code

Modified pendular vibration absorber for structures under base excitation

  • Pezo Eliot, Z. (Department of Civil Engineering, Pontifical Catholic University of Rio de Janeiro) ;
  • Goncalves, Paulo B. (Department of Civil Engineering, Pontifical Catholic University of Rio de Janeiro)
  • 투고 : 2017.05.03
  • 심사 : 2018.02.19
  • 발행 : 2018.04.25

초록

The passive control of structures using a pendulum tuned mass damper has been extensively studied in the technical literature. As the frequency of the pendulum depends only on its length and the acceleration of gravity, to tune the frequency of the pendulum with that of the structure, the pendulum length is the only design variable. However, in many cases, the required length and the space necessary for its installation are not compatible with the design. In these cases, one can replace the classical pendulum by a virtual pendulum which consists of a mass moving over a curved surface, allowing thus for a greater flexibility in the absorber design, since the length of the pendulum becomes irrelevant and the shape of the curved surface can be optimized. A mathematical model for a building with a pendular tuned mass damper and a detailed parametric analysis is conducted to study the influence of this device on the nonlinear oscillations and stability of the main system under harmonic and seismic base excitation. In addition to the circular profiles, different curved surfaces with softening and hardening characteristics are analyzed. Also, the influence of impact on energy dissipation is considered. A detailed parametric analysis is presented showing that the proposed damper can not only reduce sharply the displacements, and consequently the internal forces in the main structure, but also the accelerations, increasing user comfort. A review of the relevant aspects is also presented.

키워드

과제정보

연구 과제 주관 기관 : CAPES, FAPERJ, CNPq

참고문헌

  1. Ayorinde, E.O. and Warburton, G.B. (1980), "Minimizing structural vibrations with absorbers", Earthq. Eng. Struct. Dyn., 8(3), 219-236. https://doi.org/10.1002/eqe.4290080303
  2. Babitsky, V.I. (2013), Theory of Vibro-Impact Systems and Applications, Springer Science & Business Media, Leicestershire, U.K.
  3. Bapat, C.N. and Sankar, S. (1985), "Single unit impact damper in free and forced vibration", J. Sound Vibr., 99(1), 85-94. https://doi.org/10.1016/0022-460X(85)90446-8
  4. Battista, R.C., Rodrigues, R.S. and Pfeil, M.S. (2003), "Dynamic behavior and stability of transmission line towers under wind forces", J. Wind Eng. Industr. Aerodyn., 91, 1051-1067. https://doi.org/10.1016/S0167-6105(03)00052-7
  5. Belyakov, A.O., Seyranian, A.P. and Luongo, A. (2009), "Dynamics of the pendulum with periodically varying length", Phys. D: Nonlin. Phenom., 238(16), 1589-1597. https://doi.org/10.1016/j.physd.2009.04.015
  6. Chen, J. and Georgakis, C.T. (2013), "Tuned rolling-ball dampers for vibration control in wind turbines", J. Sound Vibr., 332(21), 5271-5282. https://doi.org/10.1016/j.jsv.2013.05.019
  7. Collette, F.S. (1998), "A combined tuned absorber and pendulum impact damper under random excitation", J. Sound Vibr., 216(2), 199-213. https://doi.org/10.1006/jsvi.1997.1666
  8. Constantinou, M.C., Soong, T.T. and Dargush, G.F. (1998), Passive Energy Dissipation Systems for Structural Design and Retrofit, Multidisciplinary Center for Earthquake Engineering Research, New York, U.S.A.
  9. De Angelis, M., Perno, S. and Reggio, A. (2012), "Dynamic response and optimal design of structures with large mass ratio TMD", Earthq. Eng. Struct. Dyn., 41, 41-60. https://doi.org/10.1002/eqe.1117
  10. Den Hartog, J.P. (1956), Mechanical Vibration, McGraw-Hill, New York, U.S.A.
  11. Duncan, M.R., Wassgren, C.R. and Krousgrill, C.M. (2005), "The damping performance of a single particle impact damper", J. Sound Vibr., 286(1), 123-144. https://doi.org/10.1016/j.jsv.2004.09.028
  12. Ertas, A. (1996), "Pendulum as vibration absorber for flexible structures: Experiments and theory", J. Vibr. Acoust., 118, 559.
  13. Fallahpasand, S., Dardel, M., Pashaei, M.H. and Mohammadi Daniali, H.R. (2015), "Investigation and optimization of nonlinear pendulum vibration absorber for horizontal vibration suppression of damped system", Struct. Des. Tall Spec. Build., 24, 873-893. https://doi.org/10.1002/tal.1216
  14. Gerges, R.R. and Vickery, B.J. (2005), "Optimum design of pendulum-type tuned mass dampers", Struct. Des. Tall Spec. Build., 14(4), 353-368. https://doi.org/10.1002/tal.273
  15. Gottlieb, H.P.W. (1997), "Isodynamical tracks and potentials", J. Sound Vibr., 199(4), 667-678. https://doi.org/10.1006/jsvi.1996.0659
  16. Gottwald, J.A., Virgin, L.N. and Dowell, E.H. (1992), "Experimental mimicry of Duffing's equation", J. Sound Vibr., 158(3), 447-467. https://doi.org/10.1016/0022-460X(92)90419-X
  17. Gus'kov, A.M., Panovko, G.Y. and Van Bin, C. (2008), "Analysis of the dynamics of a pendulum vibration absorber", J. Mach. Manufact. Reliab., 37(4), 321-329. https://doi.org/10.3103/S105261880804002X
  18. Hoang, N., Fujino, Y. and Warnitchai, P. (2008), "Optimal tuned mass damper for seismic applications and practical design formulas", Eng. Struct., 30(3), 707-715. https://doi.org/10.1016/j.engstruct.2007.05.007
  19. Jankowski, R., Kujawa, M. and Szymczak, C. (2004), "Reduction of steel chimney vibrations with a pendulum damper", Task Quarter., 8(1), 71-78.
  20. Kaynia, A.M., Biggs, J.M. and Veneziano, D. (1981), "Seismic effectiveness of tuned mass dampers", J. Struct. Div., 107(8), 1465-1484.
  21. Kelly, J.M. (1986), "Aseismic base isolation: Review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0
  22. Korenev, B.G. and Reznikov, L.M. (1993), Dynamic Vibration Absorbers, Wiley & Sons, New York, U.S.A.
  23. Kourakis, I. (2007), "Structural systems and tuned mass dampers of super-tall buildings: Case study of Taipei 101", Ph.D. Dissertation, Massachusetts Institute of Technology, Massachusetts, U.S.A.
  24. Lacarbonara, W. and Ballerini, S. (2009), "Vibration mitigation of guyed masts via tuned pendulum dampers", Struct. Eng. Mech., 32(4), 517-529. https://doi.org/10.12989/sem.2009.32.4.517
  25. Legeza, V.P. (2013), "Efficiency of a vibroprotection system with an isochronous roller damper", Mech. Sol., 48(2), 168-177. https://doi.org/10.3103/S0025654413020088
  26. Li, Q.S., Zhi, L.H., Tuan, A.Y., Kao, C.S., Su, S.C. and Wu, C.F. (2010), "Dynamic behavior of Taipei 101 tower: Field measurement and numerical analysis", J. Struct. Eng., 137(1), 143-155.
  27. Lin, J.L., Tsai, K.C. and Miranda, E. (2009), "Seismic history analysis of asymmetric buildings with soil-structure interaction", J. Struct. Eng., 135(2), 101-112. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(101)
  28. Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621
  29. Matta, E. (2015), "Seismic effectiveness of tuned mass dampers in a life-cycle cost perspective", Earthq. Struct., 9(1), 73-91. https://doi.org/10.12989/eas.2015.9.1.073
  30. Matta, E. and De Stefano, A. (2009b), "Seismic performance of pendulum and translational roof-garden TMDs", Mech. Syst. Sign. Proc., 23(3), 908-921. https://doi.org/10.1016/j.ymssp.2008.07.007
  31. Matta, E. and De Stefano, A. (2009a), "Robust design of massuncertain rolling-pendulum TMDs for the seismic protection of buildings", Mech. Syst. Sign. Proc., 23(1), 127-147. https://doi.org/10.1016/j.ymssp.2007.08.012
  32. Nagase, T. and Hisatoku. T. (1992), "Tuned pendulum mass damper installed in crystal tower", Struct. Des. Tall Spec. Build., 1(1), 35-56. https://doi.org/10.1002/tal.4320010105
  33. Naprstek, J. and Fischer, C. (2009), "Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper", Comput. Struct., 87(19), 1204-1215. https://doi.org/10.1016/j.compstruc.2008.11.015
  34. Orlando, D. and Goncalves, P.B. (2013), "Hybrid nonlinear control of a tall tower with a pendulum absorber", Struct. Eng. Mech., 46(2), 153-177. https://doi.org/10.12989/sem.2013.46.2.153
  35. Parker, T.S. and Chua, L. (2012), Practical Numerical Algorithms for Chaotic Systems, Springer Science & Business Media.
  36. Pasala, D.T.R. and Nagarajaiah, S. (2014), "Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time", Smart Struct. Syst., 13(2), 203-217. https://doi.org/10.12989/sss.2014.13.2.203
  37. Pasquetti, E. and Goncalves, P.B. (2011), "Application of Taylor expansions and symmetry concepts to oscillators with nonpolynomial nonlinearities", Int. J. Comput. Appl. Math., 6(1), 57-70.
  38. Petti, L., Giannattasio, G., De Iuliis, M. and Palazzo, B. (2010), "Small scale experimental testing to verify the effectiveness of the base isolation and tuned mass dampers combined control strategy", Smart Struct. Syst., 6(1), 57-72. https://doi.org/10.12989/sss.2010.6.1.057
  39. Pfeiffer, F., Foerg, M. and Ulbrich, H. (2006), "Numerical aspects of non-smooth multibody dynamics", Comput. Meth. Appl. Mech. Eng., 195(50), 6891-6908. https://doi.org/10.1016/j.cma.2005.08.012
  40. Pinheiro, M.A.S. (1997), "Non-linear pendulum absorber of lateral vibrations in slender towers", M.Sc. Dissertation, COPPE/UFRJ, Rio de Janeiro.
  41. Pinkaew, T., Lukkunaprasit, P. and Chatupote, P. (2003), "Seismic effectiveness of tuned mass dampers for damage reduction of structures", Eng. Struct., 25(1), 39-46. https://doi.org/10.1016/S0141-0296(02)00115-3
  42. Pirner, M. (2002), "Actual behaviour of a ball vibration absorber", J. Wind Eng. Industr. Aerodyn., 90(8), 987-1005. https://doi.org/10.1016/S0167-6105(02)00215-5
  43. Pombo, J. and Ambrosio, J. (2007), "Modelling tracks for roller coaster dynamics", Int. J. Vehicl. Des., 45(4), 470-500. https://doi.org/10.1504/IJVD.2007.014916
  44. Pombo, J. and Ambrosio, J.A. (2003), "General spatial curve joint for rail guided vehicles: Kinematics and dynamics", Multib. Syst. Dyn., 9(3), 237-264. https://doi.org/10.1023/A:1022961825986
  45. Reynolds, O. (1879), "On rolling-friction", Philosophical Transactions of the Royal Society of London, 166, 155-174.
  46. Roffel, A.J., Lourenco, R., Narasimhan, S. and Yarusevych, S. (2010), "Adaptive compensation for detuning in pendulum tuned mass dampers", J. Struct. Eng., 137(2), 242-251.
  47. Shaw, S.W. and Haddow, A.G. (1992), "On 'roller-coaster' experiments for nonlinear oscillators", Nonlin. Dyn., 3(5), 375-384. https://doi.org/10.1007/BF00045073
  48. Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, Wiley, New York, U.S.A.
  49. Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  50. Tandl, M., Kecskemethy, A. and Schneider, M. (2007), "A design environment for industrial roller coasters", Proceedings of the ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics.
  51. Villaverde, R. (2009), Fundamental Concepts of Earthquake Engineering, CRC Press Inc., New York, U.S.A.
  52. Vyas, A. and Bajaj, A.K. (2001), "Dynamics of autoparametric vibration absorbers using multiple pendulums", J. Sound Vibr., 246(1), 115-135. https://doi.org/10.1006/jsvi.2001.3616
  53. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
  54. Xiang, P. and Nishitani, A. (2014), "Optimum design for more effective tuned mass damper system and its application to baseisolated buildings", Struct. Contr. Health Monitor., 21(1), 98-114. https://doi.org/10.1002/stc.1556