DOI QR코드

DOI QR Code

Numerical Study on the Pressure Loss for Various Angles and Diameters of Cooling Channel

냉각채널의 각도와 직경 변화에 따른 채널 내 압력 손실에 관한 수치적 연구

  • Park, Jin (Department of Mechanical Engineering, Chungnam National University) ;
  • Lee, Hyunseob (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Hongjip (Department of Mechanical Engineering, Chungnam National University) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University)
  • Received : 2017.02.11
  • Accepted : 2018.02.01
  • Published : 2018.04.01

Abstract

The pressure loss in a cooling channel was investigated by conducting a numerical analysis, which was performed with a different channel angle in the axial direction, velocity of flow, and diameter of channels. The pressure loss did not change much with respect to the different channel angle. However, the pressure loss tended to decrease if the diameter of the channel increased and the velocity of the flow decreased. The results were quantified by a nondimensional method and compared to an existing experimental equation to validate them. The data obtained by this study would be helpful in the design process of a cooling channel considering the pressure loss.

냉각채널에서의 압력 손실을 수치적으로 연구하기 위하여 채널의 축 방향에 대한 각도, 채널 내부의 유체의 유속, 채널의 직경을 변화시키며 수치해석을 진행하였다. 채널의 축 방향에 대한 각도 변화에 따라서 압력 손실은 큰 변화가 없었다. 하지만 일반적으로 알려진 대로 채널의 직경이 커지면 압력손실이 감소하고, 유체의 유속이 느려지면 압력손실이 감소하는 경향은 두드러지게 나타났다. 이러한 결과는 무차원화 하여 정량화하였고, 기존 채널내부의 압력손실에 대한 경험식과 비교하여 기존 경험식의 타당성을 확인하였다. 본 연구에서 획득한 정보는 향후 냉각채널을 설계할 때 압력손실을 고려함에 있어 도움이 될 것으로 판단된다.

Keywords

References

  1. Kim, H.J. and Choi, H.S., "Investigation of Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors," Journal of the Korean Society of Propulsion Engineers, Vol. 14, No. 5, pp. 45-50, 2010.
  2. Yang, W. and Sun, B., "Numerical simulation of liquid film and regenerative cooling in a liquid rocket," Applied Thermal Engineering, Vol. 54, No. 2, pp. 460-469, 2013. https://doi.org/10.1016/j.applthermaleng.2013.02.021
  3. Sutton, G.P., Rocket Propulsion Elements, 6th ed., John Wiley & Sons Inc., New York, N.Y., U.S.A., 1992.
  4. Michel, R.W., "Combustion Performance and Heat Transfer Characterization of LOx/Hydrocarbon Type Propellants" Lyndon B. Johnson Space Center Contract NAS-9-15968, 1983.
  5. Hong, S.S., Kim, J.S., Kim, D.J. and Kim, J.H., "Performance Test of Turbopump Assembly for 75 Ton Liquid Rocket Engine Using Model Fluid," Journal of the Korean Society of Propulsion Engineers, Vol. 15, No. 2, pp. 56-61, 2011.
  6. Ulas, A. and Boysan, E., "Numerical analysis of regenerative cooling in liquid propellant rocket engines," Aerospace Science and Technology, Vol. 24, No. 1, pp. 187-197, 2013. https://doi.org/10.1016/j.ast.2011.11.006
  7. Ahn, K., Kim, J.G., Lim, B., Kim, M., Kang, D. and Kim, S.K., "Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber," Journal of the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 56-61, 2012. https://doi.org/10.6108/KSPE.2012.16.6.056
  8. Idelchik, I.E., Handbook of Hydraulic Resistance, 3rd ed., Begell House, New York, U.S.A., pp. 75-148, 1996.
  9. Yoon, W.J, Ahn K.B and Kim, H.J "An Experimental Study on Pressure Loss in Straight Cooling Channels" Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 4, pp. 94-103, 2016 https://doi.org/10.6108/KSPE.2016.20.4.094