DOI QR코드

DOI QR Code

Ursolic acid in health and disease

  • Seo, Dae Yun (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Lee, Sung Ryul (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Heo, Jun-Won (Department of Kinesiology, Inha University) ;
  • No, Mi-Hyun (Department of Kinesiology, Inha University) ;
  • Rhee, Byoung Doo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Ko, Kyung Soo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Kwak, Hyo-Bum (Department of Kinesiology, Inha University) ;
  • Han, Jin (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
  • Received : 2018.02.06
  • Accepted : 2018.03.19
  • Published : 2018.05.01

Abstract

Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.

Keywords

References

  1. Garcia AC, de Souza LG, Pereira MG, Castro RN, Garcia-Mina JM, Zonta E, et al. Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci Rep. 2016;6:20798. https://doi.org/10.1038/srep20798
  2. Sehrawat A, Roy R, Pore SK, Hahm ER, Samanta SK, Singh KB, Kim SH, Singh K, Singh SV. Mitochondrial dysfunction in cancer chemoprevention by phytochemicals from dietary and medicinal plants. Semin Cancer Biol. 2017;47:147-153. https://doi.org/10.1016/j.semcancer.2016.11.009
  3. Diarra M, El Ouahabi H, Bouxid H, Boujraf S, Khabbal Y, Ajdi F. Medicinal plants in type 2 diabetes: therapeutic and economical aspects. Int J Prev Med. 2016;7:56. https://doi.org/10.4103/2008-7802.178370
  4. de Freitas Junior LM, de Almeida EB Jr. Medicinal plants for the treatment of obesity: ethnopharmacological approach and chemical and biological studies. Am J Transl Res. 2017;9:2050-2064.
  5. Croft KD, Yamashita Y, O'Donoghue H, Shirasaya D, Ward NC, Ashida H. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease. Fitoterapia. 2017. doi: 10.1016/j.fitote.2017.12.002. [Epub ahead of print]
  6. Jiang T, Wang XQ, Ding C, Du XL. Genistein attenuates isofluraneinduced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol. 2017;21:579-589. https://doi.org/10.4196/kjpp.2017.21.6.579
  7. Leake I. Liver: plant sterols have a role in liver injury associated with parenteral nutrition. Nat Rev Gastroenterol Hepatol. 2013;10:693.
  8. Katashima CK, Silva VR, Gomes TL, Pichard C, Pimentel GD. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes Rev. 2017;18:700-711. https://doi.org/10.1111/obr.12523
  9. Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab. 2011;13:627-638. https://doi.org/10.1016/j.cmet.2011.03.020
  10. Wozniak L, Skapska S, Marszalek K. Ursolic acid-a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules . 2015;20:20614-20641. https://doi.org/10.3390/molecules201119721
  11. Jager S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants - rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016-2031. https://doi.org/10.3390/molecules14062016
  12. Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016). Expert Opin Ther Pat. 2017;27:1061-1072. https://doi.org/10.1080/13543776.2017.1344219
  13. Mancha-Ramirez AM, Slaga TJ. Ursolic acid and chronic disease: an overview of UA's effects on prevention and treatment of obesity and cancer. Adv Exp Med Biol. 2016;928:75-96.
  14. Kashyap D, Sharma A, Tuli HS, Punia S, Sharma AK. Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising antiinflammatory activities. Recent Pat Inflamm Allergy Drug Discov. 2016;10:21-33. https://doi.org/10.2174/1872213X10666160711143904
  15. Liobikas J, Majiene D, Trumbeckaite S, Kursvietiene L, Masteikova R, Kopustinskiene DM, Savickas A, Bernatoniene J. Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria. J Nat Prod . 2011;74:1640-1644. https://doi.org/10.1021/np200060p
  16. Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003;63:4375-4383.
  17. Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem. 2006;54:243-248. https://doi.org/10.1021/jf0520342
  18. Yu SG, Zhang CJ, Xu XE, Sun JH, Zhang L, Yu PF. Ursolic acid derivative ameliorates streptozotocin-induced diabestic bone deleterious effects in mice. Int J Clin Exp Pathol. 2015;8:3681-3690.
  19. Senthil S, Chandramohan G, Pugalendi KV. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenolinduced myocardial ischemia in rats. Int J Cardiol. 2007;119:131-133. https://doi.org/10.1016/j.ijcard.2006.07.108
  20. Wang Y, He Z, Deng S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des Devel Ther. 2016;10:1663-1674.
  21. Sundaresan A, Radhiga T, Pugalendi KV. Effect of ursolic acid and Rosiglitazone combination on hepatic lipid accumulation in high fat diet-fed C57BL/6J mice. Eur J Pharmacol. 2014;741:297-303. https://doi.org/10.1016/j.ejphar.2014.07.032
  22. Bakhtiari N, Hosseinkhani S, Soleimani M, Hemmati R, Noori-Zadeh A, Javan M, Tashakor A. Short-term ursolic acid promotes skeletal muscle rejuvenation through enhancing of SIRT1 expression and satellite cells proliferation. Biomed Pharmacother. 2016;78:185-196. https://doi.org/10.1016/j.biopha.2016.01.010
  23. Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;146:201-213. https://doi.org/10.1016/j.lfs.2016.01.017
  24. Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K, Ma W, Georgiadis C, Laskin JD, Conney AH. Inhibition of skin tumori-genesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res . 1994;54:701-708.
  25. Prasad S, Yadav VR, Sung B, Reuter S, Kannappan R, Deorukhkar A, Diagaradjane P, Wei C, Baladandayuthapani V, Krishnan S, Guha S, Aggarwal BB. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine. Clin Cancer Res. 2012;18:4942-4953. https://doi.org/10.1158/1078-0432.CCR-11-2805
  26. Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A, Wnuk M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis. 2017;22:800-815. https://doi.org/10.1007/s10495-017-1353-7
  27. Li W, Zhang H, Nie M, Tian Y, Chen X, Chen C, Chen H, Liu R. Ursolic acid derivative FZU-03,010 inhibits STAT3 and induces cell cycle arrest and apoptosis in renal and breast cancer cells. Acta Biochim Biophys Sin (Shanghai). 2017;49:367-373. https://doi.org/10.1093/abbs/gmx012
  28. Luo J, Hu YL, Wang H. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and $NF-{\kappa}B$ signaling pathways in vitro. Exp Ther Med. 2017;14:3623-3631. https://doi.org/10.3892/etm.2017.4965
  29. Cao C, Wang W, Lu L, Wang L, Chen X, Guo R, Li S, Jiang J. Inactivation of Beclin-1-dependent autophagy promotes ursolic acidinduced apoptosis in hypertrophic scar fibroblasts. Exp Dermatol. 2018;27:58-63. https://doi.org/10.1111/exd.13410
  30. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64:3892-3899. https://doi.org/10.1158/0008-5472.CAN-03-2904
  31. Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25-31. https://doi.org/10.1016/j.semcancer.2008.11.010
  32. Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X. Ursolic acidinduced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res Commun. 2012;419:741-747. https://doi.org/10.1016/j.bbrc.2012.02.093
  33. Shen S, Zhang Y, Zhang R, Tu X, Gong X. Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chem Biol Interact. 2014;218:28-41. https://doi.org/10.1016/j.cbi.2014.04.017
  34. Xavier CP, Lima CF, Pedro DF, Wilson JM, Kristiansen K, Pereira-Wilson C. Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. J Nutr Biochem. 2013;24:706-712. https://doi.org/10.1016/j.jnutbio.2012.04.004
  35. Leng S, Hao Y, Du D, Xie S, Hong L, Gu H, Zhu X, Zhang J, Fan D, Kung HF. Ursolic acid promotes cancer cell death by inducing Atg5- dependent autophagy. Int J Cancer. 2013;133:2781-2790.
  36. Li J, Liang X, Yang X. Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/$NF-{\kappa}B$ pathways. Oncol Rep. 2012;28:501-510. https://doi.org/10.3892/or.2012.1827
  37. Song YH, Jeong SJ, Kwon HY, Kim B, Kim SH, Yoo DY. Ursolic acid from Oldenlandia diffusa induces apoptosis via activation of caspases and phosphorylation of glycogen synthase kinase 3 beta in SKOV-3 ovarian cancer cells. Biol Pharm Bull. 2012;35:1022-1028. https://doi.org/10.1248/bpb.b110660
  38. Yan SL, Huang CY, Wu ST, Yin MC. Oleanolic acid and ursolic acid induce apoptosis in four human liver cancer cell lines. Toxicol In Vitro. 2010;24:842-848. https://doi.org/10.1016/j.tiv.2009.12.008
  39. Chen JC, Chung JG, Chen LD. Gypenoside induces apoptosis in human Hep3B and HA22T tumour cells. Cytobios. 1999;100:37-48.
  40. Nagamine T, Hayakawa K, Kusakabe T, Takada H, Nakazato K, Hisanaga E, Iha M. Inhibitory effect of fucoidan on Huh7 hepatoma cells through downregulation of CXCL12. Nutr Cancer. 2009;61:340-347. https://doi.org/10.1080/01635580802567133
  41. Li S, Liao X, Meng F, Wang Y, Sun Z, Guo F, Li X, Meng M, L Y, Sun C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced nonalcoholic fatty liver disease rats. PLoS One. 2014;9:e86724. https://doi.org/10.1371/journal.pone.0086724
  42. Jung SH, Ha YJ, Shim EK, Choi SY, Jin JL, Yun-Choi HS, Lee JR. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J. 2007;403:243-250. https://doi.org/10.1042/BJ20061123
  43. Ramirez-Rodriguez AM, Gonzalez-Ortiz M, Martinez-Abundis E, Acuna Ortega N. Effect of ursolic acid on metabolic syndrome, insulin sensitivity, and inflammation. J Med Food. 2017;20:882-886. https://doi.org/10.1089/jmf.2017.0003
  44. Chu X, He X, Shi Z, Li C, Guo F, Li S, Li Y, Na L, Sun C. Ursolic acid increases energy expenditure through enhancing free fatty acid uptake and ${\beta}$-oxidation via an UCP3/AMPK-dependent pathway in skeletal muscle. Mol Nutr Food Res. 2015;59:1491-1503. https://doi.org/10.1002/mnfr.201400670
  45. Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PLoS One. 2012;7:e39332. https://doi.org/10.1371/journal.pone.0039332
  46. Jia Y, Bhuiyan MJ, Jun HJ, Lee JH, Hoang MH, Lee HJ, Kim N, Lee D, Hwang KY, Hwang BY, Choi DW, Lee SJ. Ursolic acid is a $PPAR-{\alpha}$ agonist that regulates hepatic lipid metabolism. Bioorg Med Chem Lett. 2011;21:5876-5880. https://doi.org/10.1016/j.bmcl.2011.07.095
  47. Jia Y, Kim S, Kim J, Kim B, Wu C, Lee JH, Jun HJ, Kim N, Lee D, Lee SJ. Ursolic acid improves lipid and glucose metabolism in high-fat-fed C57BL/6J mice by activating peroxisome proliferatoractivated receptor alpha and hepatic autophagy. Mol Nutr Food Res. 2015;59:344-354. https://doi.org/10.1002/mnfr.201400399
  48. Jang SM, Yee ST, Choi J, Choi MS, Do GM, Jeon SM, Yeo J, Kim MJ, Seo KI, Lee MK. Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol. 2009;9:113-119. https://doi.org/10.1016/j.intimp.2008.10.013
  49. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. J Clin Epidemiol. 1988;41:105-114. https://doi.org/10.1016/0895-4356(88)90084-4
  50. Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol. 1997;26:1-13. https://doi.org/10.1093/ije/26.1.1
  51. Somova LI, Shode FO, Mipando M. Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. Phytomedicine. 2004;11:121-129. https://doi.org/10.1078/0944-7113-00329
  52. Pozo M, Castilla V, Gutierrez C, de Nicolas R, Egido J, Gonzalez-Cabrero J. Ursolic acid inhibits neointima formation in the rat carotid artery injury model. Atherosclerosis. 2006;184:53-62. https://doi.org/10.1016/j.atherosclerosis.2005.04.014
  53. Radhiga T, Rajamanickam C, Senthil S, Pugalendi KV. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. Food Chem Toxicol. 2012;50:3971-3977. https://doi.org/10.1016/j.fct.2012.07.067
  54. Radhiga T, Rajamanickam C, Sundaresan A, Ezhumalai M, Pugalendi KV. Effect of ursolic acid treatment on apoptosis and DNA damage in isoproterenol-induced myocardial infarction. Biochimie. 2012;94:1135-1142. https://doi.org/10.1016/j.biochi.2012.01.015
  55. Saravanan R, Pugalendi V. Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacol Rep. 2006;58:41-47.
  56. Lv YY, Jin Y, Han GZ, Liu YX, Wu T, Liu P, Zhou Q, Liu KX, Sun HJ. Ursolic acid suppresses IL-6 induced C-reactive protein expression in HepG2 and protects HUVECs from injury induced by CRP. Eur J Pharm Sci . 2012;45:190-194. https://doi.org/10.1016/j.ejps.2011.11.002
  57. Bondy SC1, LeBel CP. The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Radic Biol Med. 1993;14:633-642. https://doi.org/10.1016/0891-5849(93)90144-J
  58. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 2002;33:562-571. https://doi.org/10.1016/S0891-5849(02)00914-0
  59. De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P. A proteomic approach in the study of an animal model of Parkinson's disease. Clin Chim Acta . 2005;357:202-209. https://doi.org/10.1016/j.cccn.2005.03.028
  60. Zhang T, Su J, Wang K, Zhu T, Li X. Ursolic acid reduces oxidative stress to alleviate early brain injury following experimental subarachnoid hemorrhage. Neurosci Lett. 2014;579:12-17. https://doi.org/10.1016/j.neulet.2014.07.005
  61. Shih YH, Chein YC, Wang JY, Fu YS. Ursolic acid protects hippocampal neurons against kainate-induced excitotoxicity in rats. Neurosci Lett . 2004;362:136-140. https://doi.org/10.1016/j.neulet.2004.03.011
  62. Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog. 2009;48:517-531. https://doi.org/10.1002/mc.20490
  63. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Ye Q, Liu CM, Shan Q, Wang YJ. Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/$NF-{\kappa}B$ pathway activation. Cereb Cortex. 2010;20:2540-2548. https://doi.org/10.1093/cercor/bhq002
  64. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol. 2007;74:1078-1090. https://doi.org/10.1016/j.bcp.2007.07.007
  65. Rao JS, Steck PA, Mohanam S, Stetler-Stevenson WG, Liotta LA, Sawaya R. Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res. 1993;53(10 Suppl):2208-2211.
  66. Ma JQ, Ding J, Zhang L, Liu CM. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway. Clin Res Hepatol Gastroenterol . 2015;39:188-197. https://doi.org/10.1016/j.clinre.2014.09.007
  67. Yang LJ, Tang Q, Wu J, Chen Y, Zheng F, Dai Z, Hann SS. Inter-regulation of IGFBP1 and FOXO3a unveils novel mechanism in ursolic acid-inhibited growth of hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2016;35:59. https://doi.org/10.1186/s13046-016-0330-2
  68. Tailleux A, Wouters K, Staels B. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta. 2012;1821:809-818. https://doi.org/10.1016/j.bbalip.2011.10.016
  69. Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol. 2006;290:G852-858. https://doi.org/10.1152/ajpgi.00521.2005
  70. Gao HY, Li GY, Lou MM, Li XY, Wei XY, Wang JH. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis. J Inflamm (Lond). 2012;9:16. https://doi.org/10.1186/1476-9255-9-16
  71. Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 ${\beta}$ mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res. 2013;27:1714-1722. https://doi.org/10.1002/ptr.4925
  72. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157-163. https://doi.org/10.2337/dc09-S302
  73. Gardner DS, Rhodes P. Developmental origins of obesity: programming of food intake or physical activity? Adv Exp Med Biol. 2009;646:83-93.
  74. Carter HN, Chen CC, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda). 2015;30:208-223.
  75. Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res. 2016;5:182-186. https://doi.org/10.1016/j.imr.2016.07.003
  76. Cederholm TE, Bauer JM, Boirie Y, Schneider SM, Sieber CC, Rolland Y. Toward a definition of sarcopenia. Clin Geriatr Med. 2011;27:341-353. https://doi.org/10.1016/j.cger.2011.04.001
  77. Cederholm T, Morley JE. Sarcopenia: the new definitions. Curr Opin Clin Nutr Metab Care. 2015;18:1-4. https://doi.org/10.1097/MCO.0000000000000119
  78. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB. Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol (1985). 2001;90:2157-2165. https://doi.org/10.1152/jappl.2001.90.6.2157
  79. Masanes F, Culla A, Navarro-Gonzalez M, Navarro-Lopez M, Sacanella E, Torres B, Lopez-Soto A. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging. 2012;16:184-187. https://doi.org/10.1007/s12603-011-0108-3
  80. Viana JU, Silva SL, Torres JL, Dias JM, Pereira LS, Dias RC. Influence of sarcopenia and functionality indicators on the frailty profile of community-dwelling elderly subjects: a cross-sectional study. Braz J Phys Ther. 2013;17:373-381. https://doi.org/10.1590/S1413-35552013005000102
  81. Amigues I, Schott AM, Amine M, Gelas-Dore B, Veerabudun K, Paillaud E, Beauchet O, Rolland Y, Canoui Poitrine F, Bonnefoy M. Low skeletal muscle mass and risk of functional decline in elderly community-dwelling women: the prospective EPIDOS study. J Am Med Dir Assoc. 2013;14:352-357. https://doi.org/10.1016/j.jamda.2012.12.002
  82. Bakhtiari N, Hosseinkhani S, Tashakor A, Hemmati R. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation. Med Hypotheses. 2015;85:1-6. https://doi.org/10.1016/j.mehy.2015.02.014
  83. Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Murry DJ, Fox DK, Bongers KS, Lira VA, Meyerholz DK, Talley JJ, Adams CM. Identification and small molecule inhibition of an activating transcription factor 4 (ATF4)-dependent pathway to age-related skeletal muscle weakness and atrophy. J Biol Chem. 2015;290:25497-25511. https://doi.org/10.1074/jbc.M115.681445
  84. Jeong JW, Shim JJ, Choi ID, Kim SH, Ra J, Ku HK, Lee DE, Kim TY, Jeung W, Lee JH, Lee KW, Huh CS, Sim JH, Ahn YT. Apple pomace extract improves endurance in exercise performance by increasing strength and weight of skeletal muscle. J Med Food. 2015;18:1380-1386. https://doi.org/10.1089/jmf.2014.3401
  85. Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2013;305:E760-765. https://doi.org/10.1152/ajpendo.00302.2013
  86. Chen J, Wong HS, Leong PK, Leung HY, Chan WM, Ko KM. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance. Food Funct. 2017;8:2425-2436. https://doi.org/10.1039/C7FO00127D
  87. Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, Jeong SH, Kim N, Han J. Ursolic Acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol. 2014;18:441-446. https://doi.org/10.4196/kjpp.2014.18.5.441
  88. Bang HS, Seo DY, Chung YM, Kim DH, Lee SJ, Lee SR, Kwak HB, Kim TN, Kim M, Oh KM, Son YJ, Kim S, Han J. Ursolic acid supplementation decreases markers of skeletal muscle damage during resistance training in resistance-trained men: a pilot study. Korean J Physiol Pharmacol. 2017;21:651-656. https://doi.org/10.4196/kjpp.2017.21.6.651
  89. Cho YH, Lee SY, Kim CM, Kim ND, Choe S, Lee CH, Shin JH. Effect of loquat leaf extract on muscle strength, muscle mass, and muscle function in healthy adults: a randomized, double-blinded, and placebo-controlled trial. Evid Based Complement Alternat Med. 2016;2016:4301621.
  90. Church DD, Schwarz NA, Spillane MB, McKinley-Barnard SK, Andre TL, Ramirez AJ, Willoughby DS. l-Leucine increases skeletal muscle IGF-1 but does not differentially increase Akt/mTORC1 signaling and serum IGF-1 compared to ursolic acid in response to resistance exercise in resistance-trained men. J Am Coll Nutr. 2016;35:627-638. https://doi.org/10.1080/07315724.2015.1132019
  91. Kazmi I, Afzal M, Rahman S, Iqbal M, Imam F, Anwar F. Antiobesity potential of ursolic acid stearoyl glucoside by inhibiting pancreatic lipase. Eur J Pharmacol. 2013;709:28-36. https://doi.org/10.1016/j.ejphar.2013.02.032
  92. Zhang Y, Song C, Li H, Hou J, Li D. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal $PPAR{\alpha}$. Mol Med Rep. 2016;13:5309-5316. https://doi.org/10.3892/mmr.2016.5172
  93. Wu DM, Lu J, Zhang YQ, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ. Ursolic acid improves domoic acid-induced cognitive deficits in mice. Toxicol Appl Pharmacol. 2013;271:127-136. https://doi.org/10.1016/j.taap.2013.04.038
  94. Gong YY, Liu YY, Yu S, Zhu XN, Cao XP, Xiao HP. Ursolic acid suppresses growth and adrenocorticotrophic hormone secretion in AtT20 cells as a potential agent targeting adrenocorticotrophic hormone-producing pituitary adenoma. Mol Med Rep. 2014;9:2533-2539. https://doi.org/10.3892/mmr.2014.2078
  95. Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat. 2016;71:41-49. https://doi.org/10.1016/j.jchemneu.2015.12.002

Cited by

  1. Modification of Cysteine 179 in IKKβ by Ursolic Acid Inhibits Titanium-Wear-Particle-Induced Inflammation, Osteoclastogenesis, and Hydroxylapatite Resorption vol.15, pp.11, 2018, https://doi.org/10.1021/acs.molpharmaceut.8b00747
  2. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/8512048
  3. Phytosterols and Triterpenoids for Prevention and Treatment of Metabolic-related Liver Diseases and Hepatocellular Carcinoma vol.20, pp.3, 2019, https://doi.org/10.2174/1389201020666190219122357
  4. Synthesis and Cytotoxicity Evaluation of DOTA-Conjugates of Ursolic Acid vol.24, pp.12, 2018, https://doi.org/10.3390/molecules24122254
  5. Myrciaria tenella (DC.) O. Berg (Myrtaceae) Leaves as a Source of Antioxidant Compounds vol.8, pp.8, 2019, https://doi.org/10.3390/antiox8080310
  6. Ursolic Acid and Its Derivatives as Bioactive Agents vol.24, pp.15, 2019, https://doi.org/10.3390/molecules24152751
  7. Natural constituents from food sources: potential therapeutic agents against muscle wasting vol.10, pp.11, 2018, https://doi.org/10.1039/c9fo00912d
  8. Phytochemical profile of the aerial parts of Rehmannia glutinosa liboschitz var. purpurea Makino vol.16, pp.67, 2018, https://doi.org/10.4103/pm.pm_243_19
  9. Determination of Ursolic Acid in Extracts From Ligustri lucidum Fruit Using an Electrochemical Method vol.8, pp.None, 2018, https://doi.org/10.3389/fchem.2020.00444
  10. Terpenoids as Potential Geroprotectors vol.9, pp.6, 2018, https://doi.org/10.3390/antiox9060529
  11. Major triterpenoids from Eucalyptus tereticornis have enhanced beneficial effects in cellular models when mixed with minor compounds present in raw extract vol.93, pp.suppl3, 2018, https://doi.org/10.1590/0001-3765202120201351
  12. Ursolic Acid and Its Nanoparticles Are Potentiators of Oncolytic Measles Virotherapy against Breast Cancer Cells vol.13, pp.1, 2018, https://doi.org/10.3390/cancers13010136
  13. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches vol.22, pp.1, 2018, https://doi.org/10.3390/ijms22010277
  14. Ursolic Acid Regulates Intestinal Microbiota and Inflammatory Cell Infiltration to Prevent Ulcerative Colitis vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6679316
  15. Melissa officinalis L. as a Nutritional Strategy for Cardioprotection vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.661778
  16. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.787226
  17. Phytochemical Investigation of New Algerian Lichen Species: Physcia Mediterranea Nimis vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041121
  18. Synthesis, anticancer evaluation and mechanism studies of novel indolequinone derivatives of ursolic acid vol.109, pp.None, 2018, https://doi.org/10.1016/j.bioorg.2021.104705
  19. Therapeutic effect of ursolic acid on fetal development in pregnant rats with gestational diabetes mellitus via AGEs‐RAGE signaling pathway vol.45, pp.4, 2018, https://doi.org/10.1111/jfbc.13651
  20. Ursolic Acid Lactone Obtained from Eucalyptus tereticornis Increases Glucose Uptake and Reduces Inflammatory Activity and Intracellular Neutral Fat: An In Vitro Study vol.26, pp.8, 2018, https://doi.org/10.3390/molecules26082282
  21. The Identification of New Triterpenoids in Eucalyptus globulus Wood vol.26, pp.12, 2018, https://doi.org/10.3390/molecules26123495
  22. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo vol.42, pp.7, 2021, https://doi.org/10.1038/s41401-020-00534-y
  23. Searching for Scientific Explanations for the Uses of Spanish Folk Medicine: A Review on the Case of Mullein (Verbascum, Scrophulariaceae) vol.10, pp.7, 2018, https://doi.org/10.3390/biology10070618
  24. No additional effects of ursolic acid supplementation associated with combined exercise program on metabolic syndrome of postmenopausal women: A double-blind, randomized, placebo-controlled trial vol.44, pp.None, 2021, https://doi.org/10.1016/j.clnesp.2021.05.031
  25. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases vol.22, pp.22, 2018, https://doi.org/10.3390/ijms222212162
  26. Beneficial Effects of Ursolic Acid and Its Derivatives-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions vol.13, pp.11, 2021, https://doi.org/10.3390/nu13113900
  27. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci vol.13, pp.11, 2018, https://doi.org/10.3390/pharmaceutics13111976
  28. Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives vol.13, pp.22, 2021, https://doi.org/10.3390/polym13224036
  29. The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis vol.144, pp.None, 2018, https://doi.org/10.1016/j.biopha.2021.112267
  30. A review on the phytochemical and pharmacological properties of Hyptis suaveolens (L.) Poit vol.7, pp.1, 2018, https://doi.org/10.1186/s43094-021-00219-1
  31. Anti-Diabetic Potential of Plant-Based Pentacyclic Triterpene Derivatives: Progress Made to Improve Efficacy and Bioavailability vol.26, pp.23, 2018, https://doi.org/10.3390/molecules26237243
  32. Phytochemical constituents from the aerial parts of Salvia plebeia vol.64, pp.4, 2018, https://doi.org/10.3839/jabc.2021.053
  33. Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease vol.11, pp.1, 2018, https://doi.org/10.3390/antiox11010015