DOI QR코드

DOI QR Code

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C. (Department of mechanical engineering, National Institute of Technology Karnataka Surathkal) ;
  • Kattimani, S.C. (Department of mechanical engineering, National Institute of Technology Karnataka Surathkal)
  • Received : 2017.06.28
  • Accepted : 2018.02.08
  • Published : 2018.04.25

Abstract

This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

Keywords

References

  1. Adineh, M. and Kadkhodayan, M. (2017), "Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation", Compos. Part B: Eng., 125, 227-240. https://doi.org/10.1016/j.compositesb.2017.05.070
  2. Almeyda, E.Y., Montes, C.H., Ramos, R.R., Diaz, G.R., Realpozo, L.J.C., Bravo C.J. and Sabina, F.J. (2017), "Influence of imperfect interface and fiber distribution on the antiplane effective magneto-electro-elastic properties for fiber reinforced composites", Int. J. Solids Struct., 112, 155-168. https://doi.org/10.1016/j.ijsolstr.2017.01.016
  3. Ardestani, M.M., Zhang, L.W. and Liew, K.M. (2017), "Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates", Comput. Method. Appl. M., 317, 341-379. https://doi.org/10.1016/j.cma.2016.12.009
  4. Barandiaran, J.M., Kurlyandskaya, G.V., de Cos, D., Garcia-Arribas, A. and Vas'kovskiy, V.O. (2009), "Multilayer magnetoimpedance sensor for nondestructive testing", Sensor Lett., 7, 374-377. https://doi.org/10.1166/sl.2009.1033
  5. Bagheri, R., Ayatollahi, M. and Mousavi, S.M. (2017), "Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks", Math. Mech. Solids, 22(3), 304-323. https://doi.org/10.1177/1081286515591303
  6. Bhangale, R.K. and Ganesan, N. (2005), "Free vibration studies of simply supported nonhomogeneous functionally graded magneto-electro-elastic finite cylindrical shells", J. Sound Vib., 288, 412-422. https://doi.org/10.1016/j.jsv.2005.04.008
  7. Bhangale, R.K. and Ganesan, N. (2006), "Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method", J. Sound Vib., 294, 1016-1038. https://doi.org/10.1016/j.jsv.2005.12.030
  8. Boomgaard, V.J. and Born, R.A. (1978), "Sintered magnetoelectric composite material $BaTiO_3-Ni$ (Co, Mn)$Fe_2O_4$", J. Mater. Sci., 13(7), 1538-1548. https://doi.org/10.1007/BF00553210
  9. Buchanan, G.R. (2004), "Layered versus multiphase magneto-electro-elastic composites", Compos. Part B: Eng., 35(5), 413-420. https://doi.org/10.1016/j.compositesb.2003.12.002
  10. Chen, J.Y ., Heyliger, P.R. and Pan, E. (2014), "Free vibration of three-dimensional multilayered magneto-electro-elastic plates under clamped/free boundary conditions", J. Sound Vib., 333, 4017-4029. https://doi.org/10.1016/j.jsv.2014.03.035
  11. Chen, J., Guo, J. and Pan, E. (2017), "Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect", J. Sound Vib., 400, 550-563. https://doi.org/10.1016/j.jsv.2017.04.001
  12. Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol. 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
  13. Ebrahimi, F. and Rastgoo, A. (2011), "Nonlinear vibration analysis of piezo-thermo-electrically actuated functionally graded circular plates", Arch. Appl. Mech., 81(3), 361-383. https://doi.org/10.1007/s00419-010-0415-x
  14. Ebrahimi, F. and Rastgoo, A. (2009), "Nonlinear vibration of smart circular functionally graded plates coupled with piezoelectric layers", Int. J. Mech. Mater. Des., 5(2), 157-165. https://doi.org/10.1007/s10999-008-9091-1
  15. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct., 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002
  16. Ebrahimi, F. and Barati, M.R., (2016), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mat. Syst. Str., 28, 1472-1490.
  17. Ebrahimi, F. and Dabbagh, A. (2017), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  18. Feng, W. and Liu, J. (2007), "Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads", Struct. Eng. Mech., 27(5), 609-623. https://doi.org/10.12989/sem.2007.27.5.609
  19. Garcia-Macias, E., Castro-Triguero, R., Flores, E.I.S., Friswell, M.I. and Gallego, R. (2016), "Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates", Compos. Struct., 140, 473-490. https://doi.org/10.1016/j.compstruct.2015.12.044
  20. Garg, A.K., Khare, R.K. and Kant, T. (2006), "Free vibration of skew fiber-reinforced composite and sandwich laminates using a shear deformable finite element model", J. Sand. Struct. Mater., 8, 33-53. https://doi.org/10.1177/1099636206056457
  21. Guan, Q. (2012), "The free vibration of the Magneto-electro-elastic materials laminated circular plate", Adv. Mater. Res., 374, 2193-2199.
  22. Jamalpoor, A., Ahmadi-Savadkoohi, A., Hossein, M. and Hosseini-Hashemi, S. (2017), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco-Pasternak medium via nonlocal elasticity theory", Eur. J. Mech. A-Solid., 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002
  23. Jiang, A. and Ding, H.J. (2004), "Analytical solutions to magneto-electro-elastic beams", Struct. Eng. Mech., 18(2), 195-209. https://doi.org/10.12989/sem.2004.18.2.195
  24. Jiang, A. and Ding, H.J. (2005), "Green's functions and boundary element method for a magneto-electro-elastic half-plane", Struct. Eng. Mech., 20(2), 259-264. https://doi.org/10.12989/sem.2005.20.2.259
  25. Jiang, A. and Ding, H.J. (2007), "Analytical solutions for density functionally gradient magneto-electro-elastic cantilever beams", Smart Struct. Syst., 3(2), 173-188. https://doi.org/10.12989/sss.2007.3.2.173
  26. Kanasogi, R.M. and Ray, M.C. (2013), "Active constrained layer damping of smart skew laminated composite plates using 1-3 piezoelectric composites", J. Compos., Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2013/824163
  27. Kattimani, S.C. and Ray, M.C. (2014a), "Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates", Compos. Struct., 114, 51-63. https://doi.org/10.1016/j.compstruct.2014.03.050
  28. Kattimani, S.C. and Ray, M.C. (2014b), "Active control of large amplitude vibrations of smart magneto-electro-elastic doubly curved shells", Int. J. Mech. Mater. Des., 10, 351-378. https://doi.org/10.1007/s10999-014-9252-3
  29. Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded Magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012
  30. Kattimani, S.C. (2017), "Geometrically nonlinear vibration analysis of multiferroic composite plates and shells", Compos. Struct., 163, 185-194. https://doi.org/10.1016/j.compstruct.2016.12.021
  31. Kiani, Y. (2016), "Free vibration of FG-CNT reinforced composite skew plates", Aerosp. Sci. Technol., 58, 178-188. https://doi.org/10.1016/j.ast.2016.08.018
  32. Kiran, M.C. and Kattimani, S.C. (2017), "Buckling characteristics and static studies of multilayered magneto-electro-elastic plate", Struct. Eng. Mech., 64(6), 452-4785.
  33. Kiran, M.C. and Kattimani, S.C. (2018a), "Buckling analysis of skew magneto-electro-elastic plates under in-plane loading", J. Intel. Mat. Syst. Str., 29(6), 1-17.
  34. Kiran, M.C., Kattimani, S.C. and Vinyas, M. (2018b), "Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate", Compos. Struct., 191(6), 36-77. https://doi.org/10.1016/j.compstruct.2018.02.023
  35. Kondaiah, P., Shankar, K. and Ganesan, N. (2015), "Pyroeffects on magneto-electro-elastic sensor bonded on mild steel cylindrical shell", Smart Struct. Syst., 16(3), 537-554. https://doi.org/10.12989/sss.2015.16.3.537
  36. Kondaiah, P. and Shankar, K. (2017), "Pyroeffects on Magneto-Electro-Elastic Sensor patch subjected to thermal load", Smart Struct. Syst., 19(3), 299-307. https://doi.org/10.12989/sss.2017.19.3.299
  37. Koma, Y.A. and Zimcik, D.G. (2003), "Applications of smart structures to aircraft for performance enhancement", Can. Aeronaut. Space J., 49(4), 163-172. https://doi.org/10.5589/q03-014
  38. Kumar, R., Mondal, S., Guchhait, S. and Jamatia, R. (2017), "Analytical approach for dynamic instability analysis of functionally graded skew plate under periodic axial compression", Int. J. Mech. Sci., 130, 41-51. https://doi.org/10.1016/j.ijmecsci.2017.05.050
  39. Kurlyandskaya, G.V., de Cos, D. and Volchkov S.O. (2009), "Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: a review", Russ. J. Nondestr. Test., 45, 377-398. https://doi.org/10.1134/S1061830909060023
  40. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82, 1293-1301. https://doi.org/10.1016/j.compstruc.2004.03.026
  41. Liu, J., Zhang, P., Lin, G., Wang, W. and Lu, S. (2016), "Solutions for the magneto-electro-elastic plate using the scaled boundary finite element method", Eng. Anal. Bound. Elem., 68, 103-114. https://doi.org/10.1016/j.enganabound.2016.04.005
  42. Li, X.Y., Ding, H.J. and Chen, W.Q. (2008), "Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load", Compos. Struct., 83(4), 381-390. https://doi.org/10.1016/j.compstruct.2007.05.006
  43. Li, X.Y., Zheng, R.F., Chen, W.Q., Kang, G.Z., Gao, C.F. and Muller, R. (2017), "Three-dimensional exact magneto-electro-elastic field in an infinite transversely isotropic space with an elliptical crack under uniform loads: Shear mode", Int. J. Eng. Sci., 116, 104-129. https://doi.org/10.1016/j.ijengsci.2017.03.013
  44. Miyamoto, Y., Kaysser, W., Rabin, B., Kawasaki, A. and Ford, R.G. (2013), "Functionally graded materials: Design, processing and applications", Springer Sci. Busi. Media, 5.
  45. Milazzo, A (2014a), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. https://doi.org/10.1016/j.compositesb.2014.01.055
  46. Milazzo, A. (2014b), "Large deflection of magneto-electro-elastic laminated plates", Appl. Math. Model., 38(5), 1737-1752. https://doi.org/10.1016/j.apm.2013.08.034
  47. Milazzo, A. (2016), "Unified formulation for a family of advanced finite elements for smart multilayered plates", Mech. Adv. Mater. Struct., 23(9), 971-980. https://doi.org/10.1080/15376494.2015.1121523
  48. Mortensen, A. and Suresh, S. (1995), "Functionally graded metals and metal-ceramic composites: Part 1 Processing", Int. Mater. Rev., 40(6), 239-265. https://doi.org/10.1179/imr.1995.40.6.239
  49. Moita Simoes, J.M., Mota Soares, C.M. and Mota Soares, C.A. (2009), "Analyses of Magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91, 421-426. https://doi.org/10.1016/j.compstruct.2009.04.007
  50. Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D. and Srinivasan, G. (2008), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", J. Appl. Phys., 103(3).
  51. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electroelastic plates", J. Appl. Mech.-T., 68, 608-618. https://doi.org/10.1115/1.1380385
  52. Pan, E. and Heyliger, P.R. (2002), "Free vibration of simply supported and multilayered magnetoelectro-elastic plates", J. Sound Vib., 252(3), 429-442. https://doi.org/10.1006/jsvi.2001.3693
  53. Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", Int. J. Solids Struct., 40(24), 6859-6876. https://doi.org/10.1016/j.ijsolstr.2003.08.003
  54. Pan, E. and Han, F. (2005), "Exact solutions for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43, 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006
  55. Pompe, W., Worch, H., Epple, Friess, M., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  56. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), "Free vibration response of two-dimensional magneto-electro-elastic plates", J. Sound Vib., 292, 626-644. https://doi.org/10.1016/j.jsv.2005.08.004
  57. Ray, M.C., Rao, K.M. and Samanta, B. (1992), "Exact analysis of coupled electroelastic behavior of a piezoelectric plate under cylindrical bending", Comput. Struct., 45(4), 667-677. https://doi.org/10.1016/0045-7949(92)90485-I
  58. Ray, M.C., Oh, J. and Baz, A. (2001), "Active constrained layer damping of thin cylindrical shells", J. Sound Vib., 240(5), 921-935. https://doi.org/10.1006/jsvi.2000.3287
  59. Ruan, M. and Wang, Z.M. (2016), "Transverse vibrations of moving skew plates made of functionally graded material", J. Vib. Control., 22(16), 3504-3517. https://doi.org/10.1177/1077546314563967
  60. Shenas, A.G. and Malekzadeh, P. (2016), "Free vibration of functionally graded quadrilateral microplates in thermal environment", Thin-Wall. Struct., 106, 294-315. https://doi.org/10.1016/j.tws.2016.05.001
  61. Shooshtari, A. and Razavi, S. (2017), "Vibration of a multiphase magneto-electro-elastic simply supported rectangular plate subjected to harmonic forces", J. Intel. Mat. Syst. Str., 28(4), 451-467. https://doi.org/10.1177/1045389X16649451
  62. Vinyas, M. and Kattimani, S.C. (2017a), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519
  63. Vinyas, M. and Kattimani S.C. (2017b), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040
  64. Wang, H.M. and Ding, H.J. (2006), "Spherically symmetric transient responses of functionally graded magneto-electro-elastic hollow sphere", Struct. Eng. Mech., 23(5), 525-542. https://doi.org/10.12989/sem.2006.23.5.525
  65. Waksmanski, N. and Pan, E. (2016), "An analytical three-dimensional solution for free vibration of a magneto-electro-elastic plate considering the nonlocal effect", J. Intel. Mat. Syst. Str., 28, 1501-1513.
  66. Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto- electro-elastic plates", Int. J. Solids Struct., 40, 1669-1680. https://doi.org/10.1016/S0020-7683(03)00027-1
  67. Wang, Y., Xu, R. and Ding, H. (2011), "Axisymmetric bending of functionally graded circular magneto-electro-elastic plates", Eur. J. Mech. A Solid, 30(6), 999-1011. https://doi.org/10.1016/j.euromechsol.2011.06.009
  68. Xiao, D., Han, Q., Liu, Y. and Li, C. (2016), "Guided wave propagation in an infinite functionally graded magneto-electro-elastic plate by the Chebyshev spectral element method", Compos. Struct., 153, 704-711. https://doi.org/10.1016/j.compstruct.2016.06.063
  69. Zhang, R., Duan, Y., Or, S.W. and Zhao, Y. (2014), "Smart elasto-magneto-electric (EME) sensors for stress monitoring of steel cables: design theory and experimental validation", Sensors, 14(8), 13644-13660. https://doi.org/10.3390/s140813644
  70. Zhou, Y. and Zhu, J. (2016), "Vibration and bending analysis of multiferroic rectangular plates using third-order shear deformation theory", Compos. Struct., 153, 712-723 https://doi.org/10.1016/j.compstruct.2016.06.064