Acknowledgement
Supported by : China Postdoctoral Science Foundation, Natural Science Foundation of Shandong Province, Shandong University
References
- Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 055020. https://doi.org/10.1088/1361-665X/aa6abc
- Andrawes, B. and DesRoches, R. (2005), "Unseating prevention for multiple frame bridges using superelastic devices", Smart Mater. Struct., 14(3), 60-67. https://doi.org/10.1088/0964-1726/14/3/008
- Andrawes, B. and DesRoches, R. (2008). "Sensitivity of seismic applications to different shape memory alloy models". J. Eng. Mech., 134(2), 173-183. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(173)
- Araki, Y., Endo, T., Omori, T., Sutou, Y., Koetaka, Y., Kainuma, R. and Ishida, K. (2011), "Potential of superelastic Cu-Al-Mn alloy bars for seismic applications", Earthq. Eng. Struct. D., 40(1), 107-115. https://doi.org/10.1002/eqe.1029
- Carreras, G., Casciati, F., Casciati, S., Isalgue, A., Marzi, A. and Torra, V. (2011), "Fatigue laboratory tests toward the design of SMA portico-braces", Smart Struct. Syst., 7(1), 41-57. https://doi.org/10.12989/sss.2011.7.1.041
- Casciati, F. and Faravelli, L. (2009), "A passive control device with SMA components from the prototype to the model", Struct. Control. Health. Monit, 16(7-8), 751-765. https://doi.org/10.1002/stc.328
- Casciati, S., Faravelli, L. and Vece, M. (2017), "Investigation on the fatigue performance of Ni-Ti thin wires", Struct. Control Health Monit., 24, e1855. doi: 10.1002/stc.1855.
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Casciati, S. and Marzi, A. (2011), "Fatigue tests on SMA bars in span control", Eng. Struct., 33(33), 1232-1239. https://doi.org/10.1016/j.engstruct.2010.12.045
- Chopra, A.K. (2001), Dynamics of structures theory and applications to earthquake engineering, Upper Saddle River NJ Prentice-Hall.
- Cornell, A.C., Jalayer, F. and Hamburger, R.O. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng.- ASCE, 128, 526-532. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng. - ASCE, 130(1), 38-46. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495
- Dezfuli, F.H. and Alam, M.S. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater. Struct., 22(4), 045013.
- Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. D., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
- Dolce M, Cardone, D, Ponzo FC and Valente C (2010), "Shaking table tests on reinforced concrete frames without and with passive control systems", Earthq. Eng. Struct. D., 34(14), 1687-1717. https://doi.org/10.1002/eqe.501
- Fahnestock, L.A., Ricles, J.M. and Sause, R. (2007), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struct. Eng.- ASCE, 133(9), 1205-1214. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1205)
- Fang, C., Wang, W., He, C. and Chen, Y.Y. (2017), "Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts", Eng. Struct. 150, 390-408. https://doi.org/10.1016/j.engstruct.2017.07.067
- Fang, C., Yam, M.C.H., Lam, A.C.C. and Xie, L.K. (2014), "Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts", J. Constr. Steel. Res., 94, 122-136. https://doi.org/10.1016/j.jcsr.2013.11.008
- FEMA 1997 NEHRP Recommended provisions for seismic regulations for new buildings and other structures, Federal Emergency Management Agency Washington DC.
- Gao, N., Jeon, J.S., Hodgson, D.E. and DesRoches, R. (2016), "An innovative seismic bracing system based on a superelastic shape memory alloy ring", Smart Mater. Struct., 25(5), 055030.
- Hadi, A. and Akbari, H. (2016), "Modeling and control of a flexible continuum module actuated by embedded shape memory alloys. ", Smart Mater. Struct., 18(4), 663-682. https://doi.org/10.12989/sss.2016.18.4.663
- Hou, H.T., Li, H., Qiu, C.X. and Zhang, Y.C. (2017). "Effect of hysteretic properties of SMAs on seismic behavior of self-centering concentrically braced frames". Struct. Control Health. Monit., DOI: 10.1002/stc.2110.
- Iwan, W.D. (1997), "Drift spectrum measure of demand for earthquake ground motions", J. Struct. Eng.-ASCE, 123(4) 397-404. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(397)
- Katariya P.V., Panda, S.K., Hirwani C.K., Mehar K. and Thakare O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/SSS.2017.20.5.595
- Liu, J.L., Zhu, S., Xu, Y.L. and Zhang, Y.F. (2011), "Displacement-based design approach for highway bridges with SMA isolators", Smart Struct. Syst., 8(2), 173-190. https://doi.org/10.12989/sss.2011.8.2.173
- McCormick, J., DesRoches, R., Fugazza, D. and Auricchio, F. (2007), "Seismic assessment of concentrically braced frames with shape memory alloy braces", J. Struct. Eng. -ASCE, 133(6), 862-870. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(862)
- Moradi, S., Alam, M.S. and Asgarian, B. (2014), "Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces", Struct. Des. Tall Spec. Build., 23(18), 1406-1425. https://doi.org/10.1002/tal.1149
- Neuenhofer, A. and Filippou, F.C. (1997), "Evaluation of nonlinear frame finite-element models", J. Struct. Eng.- ASCE, 123(7), 958-966. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
- OpenSees (2013), "Open system for earthquake engineering simulation (OpenSees) [Computer software]", Pacific Earthquake Engineering Research Center Berkeley CA.
- Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys a review", J. Intel. Mat. Syst. Str., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
- Ozbulut, O.E. and Silwal B. (2016), "Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes", Smart Struct. Syst., 17(5), 709-724. https://doi.org/10.12989/sss.2016.17.5.709
- Park J.K. and Park S. (2016), "Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys", Smart Struct. Syst., 17(1), 135-147. https://doi.org/10.12989/sss.2016.17.1.135
- Priestley, M.J.N. and Kowalsky, M.J. (2000), "Direct displacement-based seismic design of concrete buildings", B.N.Z. Soc. Earthq. E., 33(4) 421-444.
- Qian, H., Li, H. and Song, G. (2016), "Experimental investigations of building structure with a superelastic shape memory alloy friction damper subject to seismic loads", Smart Mater. Struct., 25(12), 125026.
- Qiu, C. and Zhu, S. (2016), "High-mode effects on seismic performance of multi-story self-centering braced steel frames", J. Constr. Steel Res., 119, 133-143. https://doi.org/10.1016/j.jcsr.2015.12.008
- Qiu, C. and Zhu, S. (2017a), "Performance-based seismic design of self-centering steel frames with SMA-based braces", Eng. Struct., 130, 67-82. https://doi.org/10.1016/j.engstruct.2016.09.051
- Qiu, C. and Zhu, S. (2017b), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. D., 46, 117-137. https://doi.org/10.1002/eqe.2777
- Qiu, C. and Zhu, S. (2014), "Characterization of cyclic properties of superelastic monocrystalline Cu-Al-Be SMA wires for seismic applications", Constr. Build. Mater., 72, 219-230. https://doi.org/10.1016/j.conbuildmat.2014.08.065
- Qiu, C., Li, H., Ji, K.F., Hou, H.T. and Tian, L. (2017), "Performance-based plastic design approach for multi-story self-centering concentrically braced frames using SMA braces", Eng. Struct., 153, 628-638. https://doi.org/10.1016/j.engstruct.2017.10.068
- Qiu, C., Zhang, Y.C., Li, H., Qu, B., Hou, H.T., and Tian, L. (2018), "Seismic performance of concentrically braced frames with non-buckling braces: a comparative study". Eng. Struct., 154, 93-102. https://doi.org/10.1016/j.engstruct.2017.10.075
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced frame buildings with buckling-restrained braces", Eng. Struct., 25(5), 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X
- Shrestha, B. and Hao, H. (2016), "Parametric study of seismic performance of super-elastic shape memory alloy-reinforced bridge piers", Struct. Infrastruct. Eng., 12(9), 1076-1089. https://doi.org/10.1080/15732479.2015.1076856
- Sommerville, P.G., Smith, N.F., Punyamuthula, S. and Sun, J. (1997), Development of ground motion time histories for Phase 2 of the FEAM/SAC steel project SAC Background Document SAC/BD-91/04 SAC Joint Venture Sacramento Calif.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Torra, V., Carreras, G., Casciati, S. and Terriault, P. (2014), "On the NiTi wires in dampers for stayed cables", Smart Struct. Syst., 13(3), 353-374. https://doi.org/10.12989/sss.2014.13.3.353
- Torra, V., Martorell, F., Lovey F.C. and Sade, M.L. (2017), "Civil Engineering Applications: Specific Properties of NiTi Thick Wires and Their Damping Capabilities, A Review", Shap. Mem. Superelasticity, 3:403-413. https://doi.org/10.1007/s40830-017-0135-y
- Uang, C.M., Bruneau, M., Whittaker, A.S. and Tsai, K.C. (2001), Seismic Design of Steel Structures The Seismic Design Handbook",Springer ,US.
- Zhang, Y. and Zhu, S. (2007), "A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation", Smart Mater. Struct., 16(5), 1603.
- Zhang, Y., Hu, X. and Zhu, S. (2010), "Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping device", Struct. Control. Health. Monit., 16(6), 668-685. https://doi.org/10.1002/stc.327
- Zhu, S. and Zhang, Y. (2008), "Seismic analysis of concentrically braced frame systems with self-centering friction damping braces", J. Struct. Eng. - ASCE, 134(1), 121-131. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(121)
Cited by
- Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.187