References
- Asemi, K., Salehi, M. and Akhlaghi, M. (2011), "Elastic solution of a two-dimensional functionally graded thick truncated cone with finite length under hydrostatic combined loads", Acta Mech., 217(1-2), 119-134. https://doi.org/10.1007/s00707-010-0380-z
- Chen, Y.Z. (2015), "A novel solution for thick-walled cylinders made of functionally graded materials", Smart Struct. Syst., 15(6), 1503-1520. https://doi.org/10.12989/sss.2015.15.6.1503
- Chen, Y.Z. (2017), "Numerical solution for multiple confocal elliptic dissimilar cylinders", Smart Struct. Syst., 19(2), 203-211. https://doi.org/10.12989/sss.2017.19.2.203
- Chen, Y.Z. and Lin, X.Y. (2008), "Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials", Comput. Mater. Sci., 44(2), 581-587. https://doi.org/10.1016/j.commatsci.2008.04.018
- Dryden, J. and Jayaraman, K. (2006), "Effect of inhomogeneity on the stress in pipes", J. Elasticity, 83(2), 179-189. https://doi.org/10.1007/s10659-005-9043-z
- Eslami, M.R., Babaei, M.H. and Poultangari, R. (2005), "Thermal and mechanical stresses in a functionally graded thick sphere", Int. J. Pres. Ves. Pip., 82(7), 522-527. https://doi.org/10.1016/j.ijpvp.2005.01.002
- Hildebrand, F.B. (1974), Introduction to Numerical Analysis (McGraw-Hill, New York)
- Horgan, C.O. and Chan, A.M. (1999a), "The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials", J. Elasticity, 55(1), 43-59. https://doi.org/10.1023/A:1007625401963
- Horgan, C.O. and Chan, A.M. (1999b), "The stress response of functionally graded isotropic linearly elastic rotating disks", J. Elasticity, 55(3), 219-230. https://doi.org/10.1023/A:1007644331856
- Kiani, K. (2016), "Stress analysis of thermally affected rotating nanoshafts with varying material properties", Acta Mech. Sinica, 32(5), 813-827.
- Li, X.F. and Peng, X.L. (2009), "A pressurized functionally graded hollow cylinder with arbitrarily varying material properties", J. Elasticity, 96(1), 81-95. https://doi.org/10.1007/s10659-009-9199-z
- Muskhelishvili, N.I. (1963), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen.
- Nie, G.J. and Batra, R.C. (2010), "Exact solutions and material tailoring for functionally graded hollow circular cylinders", J Elasticity, 99(2), 179-201. https://doi.org/10.1007/s10659-009-9239-8
- Nie, G.J. and Batra, R. C. (2013), "Optimum Young's modulus of a homogeneous cylinder energetically equivalent to a functionally graded cylinder", J. Elasticity, 110(1), 95-110. https://doi.org/10.1007/s10659-012-9383-4
- Sadeghia, H., Baghani, M. and Naghdabadi, R. (2012), "Strain gradient elasticity solution for functionally graded micro-cylinders", Int. Eng. Sci., 50(1), 22-30. https://doi.org/10.1016/j.ijengsci.2011.09.006
- Shi, Z.F., Zhang, T.T. and Xiang, H.J. (2007), "Exact solutions of heterogeneous elastic hollow cylinders", Comput. Struct., 79(1), 140-147. https://doi.org/10.1016/j.compstruct.2005.11.058
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity (McGraw-Hill, New York).
- Tutuncu, N. (2007), "Stresses in thick-walled FGM cylinders with exponentially-varying properties", Eng. Struct., 29(9), 2032-2035. https://doi.org/10.1016/j.engstruct.2006.12.003
- Tutuncu, N. and Temel, B. (2009), "A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres", Comp. Struct., 91(3), 385-390. https://doi.org/10.1016/j.compstruct.2009.06.009
- Xin, L.B., Dui, G.S., Yang, S.Y. and Zhang, J.M. (2014), "An elasticity solution for functionally graded thick-walled tube subjected to internal pressure", Int. J. Mech. Sci., 89, 344-349. https://doi.org/10.1016/j.ijmecsci.2014.08.028
- You, L.H., Zhang, L.L. and You, X.Y. (2005), "Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials", Int. J. Pres. Ves. Pip., 82(5), 347-354. https://doi.org/10.1016/j.ijpvp.2004.11.001
- Zenkour, A.M., Elsibai, K.A. and Mashat, D.S. (2008), "Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders", Appl. Math. Mech., 29(12), 1601-1616. https://doi.org/10.1007/s10483-008-1208-x
- Zhang, X. and Hasebe, N. (1999), "Elasticity solution for a radially nonhomogeneous hollow circular cylinder", J. Appl. Mech., 66(3), 598-606. https://doi.org/10.1115/1.2791477