References
- B. A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.
- D. Kim, J. I. Choi, "Design of a multiband frequency selective surface", ETRI J., vol. 28, no.4, pp. 506-508, 2006. https://doi.org/10.4218/etrij.06.0205.0123
- J. D. Kraus, R. J. Marhefka, Antennas: For All Applications, 3rd ed., New York, NY, USA: McGraw-Hill, 2002.
- G. V. Trentini, "Partially reflecting sheet arrays", IRE Trans. Antennas Propag., vol. 12, pp. 666-671, 1956.
- D. Kim, J. Yeo, "A new resonance prediction method of Fabry-Perot cavity(FPC) antennas enclosed with metallic side walls", J. Electromagn. Eng. Sci., vol. 11, pp. 220-226, 2011. https://doi.org/10.5515/JKIEES.2011.11.3.220
- J. Ju, D. Kim, and J. Choi, "Fabry-Perot cavity antenna with lateral metallic walls for WiBro base station applications", Electron. Lett., vol. 45, pp. 141-142, 2009. https://doi.org/10.1049/el:20093174
- C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
- N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna", IEEE Trans. Antennas Propag., vol. 54, pp. 220-224, 2006. https://doi.org/10.1109/TAP.2005.861578
- C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna", IEEE Trans. Antennas Propag., vol. 50, no. 9, pp. 1285-1290, Sep. 2002. https://doi.org/10.1109/TAP.2002.800699
- R. M. Hashmi, B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures", IEEE Trans. Antennas Propag., vol. 62, pp. 2970-2977, Jun. 2014. https://doi.org/10.1109/TAP.2014.2314534
- 여준호, 김동호, "스트립라인 형태의 주파수 선택적 표면 덮개부를 이용한 PCS 대역 기지국용 EBG 공진기 안테나", 2008년 8월 전자공학회 논문지 TC편 45(4), pp. 592-604.
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed, Princeton University Press, 2011.
- L. Moustafa, B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications", IEEE Trans. Antennas Propag., vol. 7, pp. 693-696, 2008. https://doi.org/10.1109/LAWP.2008.2009076
- D. Kim, J. Ju, and J. Choi, "A mobile communication base station antenna using a genetic algorithm based Fabry-Perot resonance optimization", IEEE Trans. Antennas Propag., vol. 60, pp. 1053-1058, 2012. https://doi.org/10.1109/TAP.2011.2173108
- K. Konstinidis, A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas", IEEE Trans. Antennas Propag., vol. 62, pp. 3474-3481, 2014. https://doi.org/10.1109/TAP.2014.2320755
- D. Kim, J. Ju, and J. Choi, "A broadband Fabry-Perot cavity antenna designed using an improved resonance prediction method", Microw. Opt. Technol. Lett., vol. 53, pp. 1065-1069, 2011. https://doi.org/10.1002/mop.25898
- J. Yeo, D. Kim, "Novel design of a high-gain and wideband Fabry-Perot cavity antenna using a tapered AMC substrate", J. Infrared Millim. Terahertz Waves, pp. 217-224, 2009.
- L. Y. Ji, P. Y. Qin, "Wideband Fabry-Perot cavity antenna with a shaped ground plane", IEEE Access, vol. 6, pp. 2291, 2018. https://doi.org/10.1109/ACCESS.2017.2782749
- D. Kim, E. H. Kim, "A high-gain wideband antenna with frequency selective side reflectors operating in an antiresonant mode", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 442-445, 2015. https://doi.org/10.1109/LAWP.2014.2363199
- A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas", IEEE Trans. Antennas Propag., vol. 53, pp. 209-215, 2005. https://doi.org/10.1109/TAP.2004.840528
- S. Wang, A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antennas based on metamaterial ground planes", IEE P-Microw. Anten. P., vol. 153, pp. 1-6, 2006.
- L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities", IWAT 2005, pp. 191-194, 2005.
- K. Yao, S. Lan, and L. Xu, "A high gain Fabry-Perot cavity antenna with a double-layered partially reflecting frequency selective surface structure", 2017 ISAP, pp. 1-2, 2017.
- M. S. Toubet, R. Chantalat, M. Hajj, and B. Jecko, "2D matrix of joint ultra low-profile(ULP) EBG antennas for high gain applications", 15 Int. Sym. Antenna Tech. Applied Electromagn., pp. 1-3, 2012.
- R. Jeanty, S. Y. Chen, "A low-profile olarization-reconfigurable cavity antenna based on partially reflective surface", 2017 IEEE RFIT, pp. 226-228, 2017.
- A. P. Feresidis, J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces", IEE P-Microw. Anten. P., vol. 148, pp. 345-350, 2001.
- L. Zhou, X. Chen, and X. Duan, "Fabry-Perot resonator antenna with high aperture efficiency using a double-layer non-uniform superstrate", IEEE Trans. Antennas Propag., accepted for publication in a future issue, 2018.
- S. A. Muhammad, R. Sauleau, and H. Legay, "Small-size shielded metallic stacked Fabry-Perot cavity antennas with large bandwidth for space applications", IEEE Trans. Antennas Propag., vol. 60, pp. 792-802, 2012. https://doi.org/10.1109/TAP.2011.2173133
- R. M. Hashmi, B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures", IEEE Trans. Antennas Propag., vol. 62, pp. 2970-2977, 2014. https://doi.org/10.1109/TAP.2014.2314534
- A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, "High beam steering in Fabry-Perot leaky wave antennas", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 261-264, Dec, 2013. https://doi.org/10.1109/LAWP.2013.2248052
- A. Ourir, S. N. Burokur, and A. de Lustrac, "Electronic beam steering of an active metamaterial-based directive subwavelength cavity", Electron. Lett., vol. 43, no. 9, pp. 493-494, Apr. 2007. https://doi.org/10.1049/el:20070298
- T. Debogovic, J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control", IEEE Trans. Antennas Propag., vol. 62, no. 62, pp. 446-449, Jan. 2014. https://doi.org/10.1109/TAP.2013.2287018