Acknowledgement
Supported by : NSFC
References
- Adelman, S.A. and Doll, J.D. (1974), "Generalized Langevin equation approach for atom/solid-surface scattering: Collinear atom/harmonic chain model", J. Chem. Phys., 61, 4242-4245. https://doi.org/10.1063/1.1681723
- Baffet, D. and Givoli, D. (2011), "On the stability of the high-order higdon absorbing boundary conditions", Appl. Numer. Math., 61(6), 768-784. https://doi.org/10.1016/j.apnum.2011.01.010
- Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
- Cai, W., De Koning, M., Bulatov, V.V. and Yip, S. (2000), "Minimizing boundary reflections in coupled-domain simulations", Phys. Rev. Lett., 85(15), 3213-3216. https://doi.org/10.1103/PhysRevLett.85.3213
- Dreher, M. and Tang, S. (2008), "Time history interfacial conditions in multiscale computations of lattice oscillations", Comput. Mech., 41(5), 683-698. https://doi.org/10.1007/s00466-007-0224-4
- Engquist, B. and Majda, A. (1979), "Variational boundary conditions for molecular dynamics simulations: Treatment of the loading condition", Commun. Pure Appl. Math., 32, 313-357. https://doi.org/10.1002/cpa.3160320303
- Eriksson, S. and Nordstrom, J. (2017), "Exact non-reflecting boundary conditions revisited: Well-posedness and stability", Foundat. Comput. Math., 17(4), 957-986. https://doi.org/10.1007/s10208-016-9310-3
- Fang, M. (2012), "Boundary treatments and statistical convergence of particle simulations", Ph.D. Dissertation, Peking University, Beijing, China.
- Karpov, E.G., Wagner, G.J. and Liu W.K. (2005), "A Green's function approach to deriving nonreflecting boundary conditions in molecular dynamics simulations", Int. J. Numer. Meth. Eng., 62, 1250-1262. https://doi.org/10.1002/nme.1234
- Li, X.T. (2008), "Radiation boundary conditions for acoustic and elastic calculations", J. Comput. Phys., 227(24), 10078-10093. https://doi.org/10.1016/j.jcp.2008.08.010
- Li, X.T. (2009), "On the stability of boundary conditions for molecular dynamics", J. Comput. Appl. Math., 231(2), 493-505. https://doi.org/10.1016/j.cam.2009.03.016
- Liu, W.K., Karpov, E.G. and Park, H.S. (2005), Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, John Wiley, New York, U.S.A.
- Tang, S. and Ji, S. (2014), "Stability of atomic simulations with matching boundary conditions", Adv. Appl. Math. Mech., 6(5), 539-551. https://doi.org/10.4208/aamm.2013.m360
- Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227, 4038-4062. https://doi.org/10.1016/j.jcp.2007.12.012
- Tang, S., Hou, T.Y. and Liu, W.K. (2006a), "A mathematical framework of the bridging scale method", Int. J. Numer. Meth. Eng., 65, 1688-1713. https://doi.org/10.1002/nme.1514
- Tang, S., Hou, T.Y. and Liu, W.K. (2006b), "A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations", J. Comput. Phys., 213, 57-85. https://doi.org/10.1016/j.jcp.2005.08.001
- Trefethen, L.N. (1985), "Stability of finite-difference models containing two boundaries or interfaces", Math. Comput., 45(172), 279-300. https://doi.org/10.1090/S0025-5718-1985-0804924-2
- Thirunavukkarasu, S. and Guddati, M.N. (2011). "Absorbing boundary conditions for time harmonic wave propagation in discretized domains", Comput. Meth. Appl. Mech. Eng., 200(33-36), 2483-2497. https://doi.org/10.1016/j.cma.2011.04.021
- Wagner, G.J. and Liu, W.K. (2003), "Coupling of atomistic and continuum simulations using a bridging scale decomposition", J. Comput. Phys., 190(1), 249-274. https://doi.org/10.1016/S0021-9991(03)00273-0
- Wang, X. and Tang, S. (2010), "Matching boundary conditions for diatomic chains", Comput. Mech., 46, 813-826. https://doi.org/10.1007/s00466-010-0515-z
- Wang, X. (2010), "Matching boundary conditions for atomic simulations of crystalline solids", Ph.D. Dissertation, Tsinghua University, Beijing, China.
- Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Meth. Eng., 93, 1255-1285. https://doi.org/10.1002/nme.4426
- Zhang, W.S., Chung, E.T. and Wang, C.W. (2014), "Stability for imposing absorbing boundary conditions in the finite element simulation of acoustic wave propagation", Appl. Numer. Math., 32(1), 1-20. https://doi.org/10.1016/S0168-9274(99)00013-6