DOI QR코드

DOI QR Code

Stability of matching boundary conditions for diatomic chain and square lattice

  • Ji, Songsong (Department of Mechanics and Engineering Science, College of Engineering, Peking University) ;
  • Tang, Shaoqiang (HEDPS, CAPT and LTCS, College of Engineering, Peking University)
  • Received : 2017.08.16
  • Accepted : 2017.10.04
  • Published : 2018.06.25

Abstract

Stability of MBC1, a specific matching boundary condition, is proved for atomic simulations of a diatomic chain. The boundary condition and the Newton equations that govern the atomic dynamics form a coupled system. Energy functions that decay along with time are constructed for both the boundary with the same type atoms and the one with different type atoms. For a nonlinear chain, MBC1 is also shown stable. Numerical verifications are presented. Moreover, MBC1 is proved to be stable for a two dimensional square lattice.

Keywords

Acknowledgement

Supported by : NSFC

References

  1. Adelman, S.A. and Doll, J.D. (1974), "Generalized Langevin equation approach for atom/solid-surface scattering: Collinear atom/harmonic chain model", J. Chem. Phys., 61, 4242-4245. https://doi.org/10.1063/1.1681723
  2. Baffet, D. and Givoli, D. (2011), "On the stability of the high-order higdon absorbing boundary conditions", Appl. Numer. Math., 61(6), 768-784. https://doi.org/10.1016/j.apnum.2011.01.010
  3. Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114, 185-200. https://doi.org/10.1006/jcph.1994.1159
  4. Cai, W., De Koning, M., Bulatov, V.V. and Yip, S. (2000), "Minimizing boundary reflections in coupled-domain simulations", Phys. Rev. Lett., 85(15), 3213-3216. https://doi.org/10.1103/PhysRevLett.85.3213
  5. Dreher, M. and Tang, S. (2008), "Time history interfacial conditions in multiscale computations of lattice oscillations", Comput. Mech., 41(5), 683-698. https://doi.org/10.1007/s00466-007-0224-4
  6. Engquist, B. and Majda, A. (1979), "Variational boundary conditions for molecular dynamics simulations: Treatment of the loading condition", Commun. Pure Appl. Math., 32, 313-357. https://doi.org/10.1002/cpa.3160320303
  7. Eriksson, S. and Nordstrom, J. (2017), "Exact non-reflecting boundary conditions revisited: Well-posedness and stability", Foundat. Comput. Math., 17(4), 957-986. https://doi.org/10.1007/s10208-016-9310-3
  8. Fang, M. (2012), "Boundary treatments and statistical convergence of particle simulations", Ph.D. Dissertation, Peking University, Beijing, China.
  9. Karpov, E.G., Wagner, G.J. and Liu W.K. (2005), "A Green's function approach to deriving nonreflecting boundary conditions in molecular dynamics simulations", Int. J. Numer. Meth. Eng., 62, 1250-1262. https://doi.org/10.1002/nme.1234
  10. Li, X.T. (2008), "Radiation boundary conditions for acoustic and elastic calculations", J. Comput. Phys., 227(24), 10078-10093. https://doi.org/10.1016/j.jcp.2008.08.010
  11. Li, X.T. (2009), "On the stability of boundary conditions for molecular dynamics", J. Comput. Appl. Math., 231(2), 493-505. https://doi.org/10.1016/j.cam.2009.03.016
  12. Liu, W.K., Karpov, E.G. and Park, H.S. (2005), Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, John Wiley, New York, U.S.A.
  13. Tang, S. and Ji, S. (2014), "Stability of atomic simulations with matching boundary conditions", Adv. Appl. Math. Mech., 6(5), 539-551. https://doi.org/10.4208/aamm.2013.m360
  14. Tang, S. (2008), "A finite difference approach with velocity interfacial conditions for multiscale computations of crystalline solids", J. Comput. Phys., 227, 4038-4062. https://doi.org/10.1016/j.jcp.2007.12.012
  15. Tang, S., Hou, T.Y. and Liu, W.K. (2006a), "A mathematical framework of the bridging scale method", Int. J. Numer. Meth. Eng., 65, 1688-1713. https://doi.org/10.1002/nme.1514
  16. Tang, S., Hou, T.Y. and Liu, W.K. (2006b), "A pseudo-spectral multiscale method: interfacial conditions and coarse grid equations", J. Comput. Phys., 213, 57-85. https://doi.org/10.1016/j.jcp.2005.08.001
  17. Trefethen, L.N. (1985), "Stability of finite-difference models containing two boundaries or interfaces", Math. Comput., 45(172), 279-300. https://doi.org/10.1090/S0025-5718-1985-0804924-2
  18. Thirunavukkarasu, S. and Guddati, M.N. (2011). "Absorbing boundary conditions for time harmonic wave propagation in discretized domains", Comput. Meth. Appl. Mech. Eng., 200(33-36), 2483-2497. https://doi.org/10.1016/j.cma.2011.04.021
  19. Wagner, G.J. and Liu, W.K. (2003), "Coupling of atomistic and continuum simulations using a bridging scale decomposition", J. Comput. Phys., 190(1), 249-274. https://doi.org/10.1016/S0021-9991(03)00273-0
  20. Wang, X. and Tang, S. (2010), "Matching boundary conditions for diatomic chains", Comput. Mech., 46, 813-826. https://doi.org/10.1007/s00466-010-0515-z
  21. Wang, X. (2010), "Matching boundary conditions for atomic simulations of crystalline solids", Ph.D. Dissertation, Tsinghua University, Beijing, China.
  22. Wang, X. and Tang, S. (2013), "Matching boundary conditions for lattice dynamics", Int. J. Numer. Meth. Eng., 93, 1255-1285. https://doi.org/10.1002/nme.4426
  23. Zhang, W.S., Chung, E.T. and Wang, C.W. (2014), "Stability for imposing absorbing boundary conditions in the finite element simulation of acoustic wave propagation", Appl. Numer. Math., 32(1), 1-20. https://doi.org/10.1016/S0168-9274(99)00013-6