References
- Abdelhak, Z., Hadji, L., Daouadji, T.H. and Adda, B. (2016), "Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions", Smart Struct. Syst., 18(2), 267-291. https://doi.org/10.12989/sss.2016.18.2.267
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (1999), "Higher-order theory for functionally graded materials", Compos. Part B: Eng., 30(8), 777-832. https://doi.org/10.1016/S1359-8368(99)00053-0
- Akbarov, S.D., Guliyev, H.H. and Yahnioglu, N. (2017), "Threedimensional analysis of the natural vibration of the threelayered hollow sphere with middle layer made of FGM", Struct. Eng. Mech., 61(5), 563-576. https://doi.org/10.12989/sem.2017.61.5.563
- Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123(4), 296. https://doi.org/10.1007/s00339-017-0854-0
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Chareonsuk, J. and Vessakosol, P. (2011), "Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method", Appl. Therm. Eng., 31(2), 213-227. https://doi.org/10.1016/j.applthermaleng.2010.09.001
- Chi, S.H. and Chung, Y.L. (2002), "Cracking in sigmoid functionally graded coating", J. Mech., 18, 41-53.
- Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617
- Daneshjou, K., Bakhtiari, M. and Tarkashvand, A. (2017), "Wave propagation and transient response of a fluid-filled FGM cylinder with rigid core using the inverse laplace transform", Eur. J. Mech.-A/Sol., 61, 420-432. https://doi.org/10.1016/j.euromechsol.2016.10.007
- Documentation, A.B.A.Q.U.S. (2012), Simulia, Providence, RI.
- Fazzolari, F.A. (2016), "Reissner's mixed variational theorem and variable kinematics in the modelling of laminated composite and FGM doubly-curved shells", Compos. Part B: Eng., 89, 408-423. https://doi.org/10.1016/j.compositesb.2015.11.031
- Fu, Y., Hu, S. and Mao, Y. (2014), "Nonlinear transient response of functionally graded shallow spherical shells subjected to mechanical load and unsteady temperature field", Acta Mech. Sol. Sin., 27(5), 496-508. https://doi.org/10.1016/S0894-9166(14)60058-6
- Ghannad, M. and Yaghoobi, M.P. (2017), "2D thermo elastic behavior of a FG cylinder under thermomechanical loads using a first order temperature theory", J. Press. Vess. Pip., 149, 75-92. https://doi.org/10.1016/j.ijpvp.2016.12.002
- Hamed, M.A., Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0
- Jafari Fesharaki, J., Madani, S.G. and Golabi, S.I. (2016), "Numerical and analytical investigation of a cylinder made of functional graded materials under thermo-mechanical fields", J. Mod. Proc. Manuf. Prod., 5(3), 59-68.
- Kar, V.R. and Panda, S.K. (2015), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Sol. Struct., 12(11), 2006-2024. https://doi.org/10.1590/1679-78251691
- Khazaeinejad, P. and Usmani, A.S. (2016), "Temperaturedependent nonlinear analysis of shallow shells: A theoretical approach", Compos. Struct., 141, 1-13. https://doi.org/10.1016/j.compstruct.2016.01.060
- Liang, X., Wang, Z., Wang, L., Izzuddin, B.A. and Liu, G. (2015), "A semi-analytical method to evaluate the dynamic response of functionally graded plates subjected to underwater shock", J. Sound Vibr., 336, 257-274. https://doi.org/10.1016/j.jsv.2014.10.013
- Liew, K.M., Zhao, X. and Ferreira, A.J. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018
- Moosaie, A. (2016), "A nonlinear analysis of thermal stresses in an incompressible functionally graded hollow cylinder with temperature-dependent material properties", Eur. J. Mech.-A/Sol., 55, 212-220. https://doi.org/10.1016/j.euromechsol.2015.09.005
- Najibi, A. and Talebitooti, R. (2017), "Nonlinear transient thermoelastic analysis of a 2D-FGM thick hollow finite length cylinder", Compos. Part B: Eng., 111, 211-227. https://doi.org/10.1016/j.compositesb.2016.11.055
- Ranjbar, J. and Alibeigloo, A. (2016), "Response of functionally graded spherical shell to thermo-mechanical shock", Aerosp. Sci. Technol., 51, 61-69. https://doi.org/10.1016/j.ast.2016.01.021
- Sator, L., Sladek, V. and Sladek, J. (2017), "Multi-gradation coupling effects in FGM plates", Compos. Struct., 171, 515-527. https://doi.org/10.1016/j.compstruct.2017.03.063
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010
- Sheng, G.G. and Wang, X. (2017), "Nonlinear response of fluidconveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions", Compos. Struct., 168, 675-684. https://doi.org/10.1016/j.compstruct.2017.02.063
- Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010
- Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
- Viola, E., Rossetti, L., Fantuzzi, N. and Tornabene, F. (2016), "Generalized stress-strain recovery formulation applied to functionally graded spherical shells and panels under static loading", Compos. Struct., 156, 145-164. https://doi.org/10.1016/j.compstruct.2015.12.060
- Wu, C.P. and Lim, X.F. (2016), "Coupled electro-mechanical effects and the dynamic responses of functionally graded piezoelectric film-substrate circular hollow cylinders", Thin-Wall. Struct., 102, 1-17. https://doi.org/10.1016/j.tws.2016.01.008
- Wu, C.P. and Liu, Y.C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031
Cited by
- Thermoelastic Crack Analysis in Functionally Graded Pipelines Conveying Natural Gas by an FEM vol.10, pp.4, 2018, https://doi.org/10.1142/s1758825118500369
- A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- Dynamic Analysis of Layered Functionally Graded Viscoelastic Deep Beams with Different Boundary Conditions Due to a Pulse Load vol.12, pp.5, 2018, https://doi.org/10.1142/s1758825120500556
- Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models vol.36, pp.3, 2018, https://doi.org/10.12989/scs.2020.36.3.293
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2018, https://doi.org/10.12989/gae.2021.24.6.545
- Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2018, https://doi.org/10.12989/sem.2021.79.1.023
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2018, https://doi.org/10.12989/scs.2021.40.2.307