참고문헌
- Alibrandi, U. and Der Kiureghian, A. (2012), "A gradient-free method for determining the design point in nonlinear stochastic dynamic analysis", Prob. Eng. Mech., 28, 2-10. https://doi.org/10.1016/j.probengmech.2011.08.018
- Alibrandi, U. and Mosalam, K.M. (2017), "Equivalent linearization methods for stochastic dynamic analysis using linear response surfaces", J. Eng. Mech., 143(8), 04017055. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001264
- Atkinson, G.M. (1993), "Earthquake source spectra in Eastern North America", Bull. Seismol. Soc. Am. 83(6), 1778-1798.
- Atkinson, G.M. and Silva, W. (2000), "Stochastic modeling of California ground motions", Bull. Seismol. Soc. Am., 90(2), 255-274. https://doi.org/10.1785/0119990064
- Au, S.K. and Beck, J.L. (2003), "Subset simulation and its application to seismic risk based on dynamic analysis", J. Eng. Mech., 129(8), 901-917. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:8(901)
- Baker, J.W. and Cornell, C.A. (2006), Vector-Valued Ground Motion Intensity Measures for Probabilistic Seismic Demand Analysis, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, U.S.A.
- Baker, J.W. and Lee, C. (2016), "An improved algorithm for selecting ground motions to match a conditional spectrum", J. Earthq. Eng., Accepted.
- Beresnev, I.A. and Atkinson, G.M. (1998), "Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earth-quake, I. Validation on rock sites", Bull. Seismol. Soc. Am., 88(6), 1392-1401.
- Beresnev, I. and Atkinson, G. (1999), "Generic finite-fault model for ground motion prediction in eastern North America", Bull. Seismol. Soc. Am., 89(3), 608-625.
- Boatwright, J. and Choy, G.L. (1992), "Acceleration source spectra anticipated for large earthquakes in northeastern North America", Bull. Seismol. Soc. Am., 82(2), 660-682.
- Boore, D.M. (2003), "Prediction of ground motion using the stochastic method", Pure Appl. Geophys., 160, 635-676. https://doi.org/10.1007/PL00012553
- Boore, D.M. (2009), "Comparing stochastic point-source and finite-source ground-motion simulations", SMSIM and EXSIM, Bull. Seismol. Soc. Am., 99(6), 3202-3216. https://doi.org/10.1785/0120090056
- Boore, D.M. and Atkinson, G.M. (1987), "Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America", Bull. Seismol. Soc. Am., 77, 440-467.
- Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Non-Linear Oscillation, Prague, Czechoslovakia.
- Broccardo, M. (2014), Further Development of the Tail-Equivalent Linearization Method for Nonlinear Stochastic Dynamics, University of California, Berkeley, U.S.A.
- Broccardo, M., Alibrandi, U., Wang, Z, and Garre, L. (2017), "The tail equivalent linearization method for nonlinear stochastic processes, genesis and developments", Risk Reliab. Analy.: Theor. Appl., 109-142.
- Broccardo, M. and Der Kiureghian, A. (2013), "Non-stationary stochastic dynamic analysis by tail-equivalent linearization", Proceedings of the 11th International Conference on Structural Safety and Reliability, New York, U.S.A.
- Broccardo, M. and Der Kiureghian, A. (2015), "Multicomponent nonlinear stochastic dynamic analysis by tail-equivalent linearization", J. Eng. Mech., 142(3), 04015100.
- Brune, J. (1971), "Correction: Tectonic stress and the spectra of seismic shear waves", J. Geophys. Res., 76, 5002. https://doi.org/10.1029/JB076i020p05002
- Brune, J.N. (1970), "Tectonic stress and the spectra of seismic shear waves from earthquakes", J. Geophys. Res., 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997
- Burks, L.S., Zimmerman, R.B. and Baker, J.W. (2015), "Evaluation of hybrid broadband ground motion simulations for response history analysis and design", Earthq. Spectr., 31(3), 1691-1710. https://doi.org/10.1193/091113EQS248M
- Cimellaro, G.P., Reinhorn, A.M., D'Ambrisi, A. and De Stefano, M. (2009), "Fragility analysis and seismic record selection", J. Struct. Eng., 137(3), 379-390.
- Crandall, S.H. (2006), "A half-century of stochastic equivalent linearization", Struct. Contr. Health Monitor., 13(1), 27-40. https://doi.org/10.1002/stc.129
- Der Kiureghian, A. (2000), "The geometry of random vibrations and solutions by FORM and SORM", Prob. Eng. Mech., 15(1), 81-90. https://doi.org/10.1016/S0266-8920(99)00011-9
- Der Kiureghian, A. and Fujimura, K. (2009), "Nonlinear stochastic dynamic analysis for performance-based earthquake engineering", Earthq. Eng. Struct. Dyn., 38(5), 719-738. https://doi.org/10.1002/eqe.899
- Ellingwood, B.R., Celik, O.C. and Kinali, K. (2007), "Fragility assessment of building structural systems in mid-America", Earthq. Eng. Struct. Dyn., 36(13), 1935-1952. https://doi.org/10.1002/eqe.693
- Fujimura, K. and Der Kiureghian, A. (2007), "Tail-equivalent linearization method for nonlinear random vibration", Prob. Eng. Mech., 22(1), 63-76. https://doi.org/10.1016/j.probengmech.2006.08.001
- Garre, L. and Der Kiureghian, A. (2010), "Tail-equivalent linearization method in frequency domain and application to marine structures", Mar. Struct., 23(3), 322-338. https://doi.org/10.1016/j.marstruc.2010.07.006
- Hanks, T.C. and McGuire, R.K. (1981), "Character of high frequency ground motion", Bull. Seismol. Soc. Am., 71, 2071-2095.
- Haselton, C.B., Baker, J.W., Bozorgnia, Y., Goulet, C.A., Kalkan, E., Luco, N. and Watson-Lamprey, J. (2009), Evaluation of Ground Motion Selection and Modification Methods: Predicting Median Interstory Drift Response of Buildings, PEER Report 2009.
- Haukaas, T. and Der Kiureghian, A. (2004), Finite Element Reliability and Sensitivity Methods for Performance-Based Engineering, Rep. No. PEER 2003/14, Pacific Earthquake Engineering Research Center, University of California, Berkeley, California, U.S.A.
- Haukaas, T. and Der Kiureghian, A. (2006), "Strategies for zfinding the design point in nonlinear finite element reliability analysis", Prob. Eng. Mech., 21(2), 133-147. https://doi.org/10.1016/j.probengmech.2005.07.005
- He, J. (2015), "Karhunen-Loeve expansion for random earthquake excitations", Earthq. Eng. Eng. Vibr., 14(1), 77. https://doi.org/10.1007/s11803-015-0007-4
- Hong, H.P. and Goda, K. (2006), "A comparison of seismichazard and risk deaggregation", Bullet. Seismol. Soc. Am., 96(6), 2021-2039. https://doi.org/10.1785/0120050238
- Ju, B.S., Jung, W.Y. and Ryu, Y.H. (2013), "Seismic fragility evaluation of piping system installed in critical structures", Struct. Eng. Mech., 46(3), 337-352. https://doi.org/10.12989/sem.2013.46.3.337
- Kafali, C. and Grigoriu, M. (2007), "Seismic fragility analysis: Application to simple linear and nonlinear systems", Earthq. Eng. Struct. Dyn., 36(13), 1885-1900. https://doi.org/10.1002/eqe.726
- Kanai, K. (1957), "Semiempirical formula for the seismic characteristics of the ground motion", Bull. Earth. Res. Inst., 35(2), 308-325.
- Katsanos, E.I., Sextos, A.G. and Manolis, G.D. (2010), "Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective", Soil Dyn. Earthq. Eng., 30(4), 157-169. https://doi.org/10.1016/j.soildyn.2009.10.005
- Key, D. (1988), The Calculation of Structure Response. Earthquake Design Practice for Buildings, Thomas Telford, London, U.K.
- Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017) "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/SEM.2017.63.2.259
- Kohrangi, M., Vamvatsikos, D. and Bazzurro, P. (2017), "Site dependence and record selection schemes for building fragility and regional loss assessment", Earthq. Eng. Struct. Dyn.
- Koo, H. and Der Kiureghian, A. (2003), FORM, SORM and Simulation Techniques for Nonlinear Random Vibrations, Rep. No. UCB/SEMM-2003/1, Dept. of Civil and Environmental Engineering, University of California, Berkeley, California, U.S.A.
- Koo, H., Der Kiureghian, A. and Fujimura, K. (2005), "Designpoint excitation for non-linear random vibration", Probab. Eng. Mech., 20(2), 136-147. https://doi.org/10.1016/j.probengmech.2005.04.001
- Kwon, O.S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010
- Lallemant, D., Kiremidjian, A. and Burton, H. (2015), "Statistical procedures for developing earthquake damage fragility curves". Earthq. Eng. Struct. Dyn., 44(9), 1373-1389. https://doi.org/10.1002/eqe.2522
- Lee, T.H. and Mosalam, K.M. (2005), "Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method", Earthq. Eng. Struct. Dyn., 34(14), 1719-1736. https://doi.org/10.1002/eqe.506
- Li, C.C. and Der Kiureghian, A. (1993), "Optimal discretization of random fields", J. Eng. Mech., 119(6), 1136-1154. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
- Lin, T., Harmsen, S.C., Baker, J.W. and Luco, N. (2013), "Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models", Bullet. Seismol. Soc. Am., 103(2A), 1103-1116. https://doi.org/10.1785/0120110293
- Liu, J., Liu, Y. and Liu, H. (2010), "Seismic fragility analysis of composite frame structure based on performance", Earthq. Sci., 23(1), 45-52. https://doi.org/10.1007/s11589-009-0049-7
- Liu, Z., Liu, Z. and Peng, Y. (2017), "Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes", J. Sound Vibr., 408, 168-189. https://doi.org/10.1016/j.jsv.2017.07.016
- Mandal, T.K., Ghosh, S. and Pujari, N.N. (2016), "Seismic fragility analysis of a typical Indian PHWR containment: Comparison of fragility models", Struct. Safety, 58, 11-19. https://doi.org/10.1016/j.strusafe.2015.08.003
- Mehani, Y., Bechtoula, H., Kibboua, A. and Naili, M. (2013), "Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake", Struct. Eng. Mech, 46(6), 791-808. https://doi.org/10.12989/sem.2013.46.6.791
- Mitropoulou, C. C., and Papadrakakis, M. (2011), "Developing fragility curves based on neural network IDA predictions", Eng. Struct., 33(12), 3409-3421. https://doi.org/10.1016/j.engstruct.2011.07.005
- Motazedian, D. and Atkinson, G.M. (2005), "Stochastic finitefault modeling based on a dynamic corner frequency", Bull. Seismol. Soc. Am., 95(3), 995-1010. https://doi.org/10.1785/0120030207
- Radu, A. and Grigoriu, M. (2014), "A comparative study on fragility analyses in earthquake engineering", In A. Cunha, E. Caetano, P. Ribeiro, & G. Muller (Eds.), Proceedings of the 9th International Conference on Structural Dynamics, Porto, Portugal,
-
Raoufi, R. and Ghafory-Ashtiany, M. (2016), "Nonlinear biaxial structural vibration under bidirectional random excitation with incident angle
${\theta}$ by tail-equivalent linearization method", J. Eng. Mech., 142(8), 04016050. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001103 - Schotanus, M.I.J., Franchin, P., Lupoi, A. and Pinto, P.E. (2004), "Seismic fragility analysis of 3D structures", Struct. Safety, 26(4), 421-441. https://doi.org/10.1016/j.strusafe.2004.03.001
- Seyedi, D.M., Gehl, P., John Douglas, L., Davenne, N.M. and Ghavamian, S. (2010), "Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis", Earthq. Eng. Struct. Dyn., 39(1), 91-108. https://doi.org/10.1002/eqe.939
- Silva, V., Crowley, H. and Bazzurro, P. (2016), "Exploring risktargeted hazard maps for Europe", Earthq. Spectr., 32(2), 1165-1186. https://doi.org/10.1193/112514EQS198M
- Sudret, B. and Der Kiureghian, A. (2000), Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report, Berkeley: Department of Civil and Environmental Engineering, University of California, U.S.A.
- Tajimi, H. (1960), "A statistical method of determining the maximum response of a building structure during an earthquake", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo.
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141
- Vanmarcke, E. (1975), "On the distribution of the first-passage time for normal stationary random processes", J. Appl. Mech., 42(1), 215-220. https://doi.org/10.1115/1.3423521
- Wang, Z. and Der Kiureghian, A. (2016), "Tail-equivalent linearization of inelastic multisupport structures subjected to spatially varying stochastic ground motion", J. Eng. Mech., 142(8), 4016053. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001106
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Div., 102(2), 249-263.
- Yazdani, A. and Eftekhari, S.N. (2012), "Variance decomposition of the seismic response of structures", Sci. Iran., 19(1), 84-90. https://doi.org/10.1016/j.scient.2011.12.003
- Yazdani, A. and Salimi, M.R. (2015), "Earthquake response spectra estimation of bilinear hysteretic systems using randomvibration theory method", Earthq. Struct., 8(5), 1055-1067. https://doi.org/10.12989/eas.2015.8.5.1055
- Yazdani, A. and Takada, T. (2011), "Probabilistic study of the effect of the influence of ground motion variables on the response spectra", Struct. Eng. Mech., 39, 877-893. https://doi.org/10.12989/sem.2011.39.6.877
- Zhang, J. and Ellingwood, B. (1994), "Orthogonal series expansions of random fields in reliability analysis", J. Eng. Mech., 120(12), 2660-2677. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2660)
피인용 문헌
- Analysis on the Time-Varying Fragility of Offshore Concrete Bridge vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2739212
- Effect of biaxial stress state on seismic fragility of concrete gravity dams vol.18, pp.3, 2020, https://doi.org/10.12989/eas.2020.18.3.285