DOI QR코드

DOI QR Code

Comparison of Mutagenic Activities of Various Ultra-Fine Particles

  • Park, Chang Gyun (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Cho, Hyun Ki (College of Agriculture, Life & Environment Sciences, Chungbuk National University) ;
  • Shin, Han Jae (KT&G Research Institute) ;
  • Park, Ki Hong (National Leading Research Laboratory (Aerosol Technology and Monitoring Laboratory), School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lim, Heung Bin (College of Agriculture, Life & Environment Sciences, Chungbuk National University)
  • 투고 : 2018.01.30
  • 심사 : 2018.03.19
  • 발행 : 2018.04.15

초록

Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.

키워드

참고문헌

  1. Weidemann, E., Andersson, P.L., Bidleman, T., Boman, C., Carlin, D.J., Collina, E., Cormier, S.A., Gouveia-Figueira, S.C., Gullett, B.K., Johansson, C., Lucas, D., Lundin, L., Lundstedt, S., Marklund, S., Nording, M.L., Ortuno, N., Sallam, A.A., Schmidt, F.M. and Jansson, S. (2016) 14th congress of combustion by-products and their health effectsorigin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources. Environ. Sci. Pollut. Res. Int., 23, 8141-8159. https://doi.org/10.1007/s11356-016-6308-y
  2. Brunekreef, B. and Holgate, S.T. (2002) Air pollution and health. Lancet, 360, 1233-1242. https://doi.org/10.1016/S0140-6736(02)11274-8
  3. Kim, K.H., Kabir, E. and Kabir, S. (2015) A review on the human health impact of airborne particulate matter. Environ. Int., 74, 136-143. https://doi.org/10.1016/j.envint.2014.10.005
  4. Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I. and Zeger, S.L. (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N. Engl. J. Med., 343, 1742-1749. https://doi.org/10.1056/NEJM200012143432401
  5. Yang, W. and Omaye, S.T. (2009) Air pollutants, oxidative stress and human health. Mutat. Res., 674, 45-54. https://doi.org/10.1016/j.mrgentox.2008.10.005
  6. Fang, T., Verma, V., Guo, H., King, L., Edgerton, E. and Weber, R.J. (2014) A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE). Atmos. Meas. Tech., 8, 471-482.
  7. Valavanidis, A., Vlachogianni, T., Fiotakis, K. and Loridas, S. (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health, 10, 3886-3907. https://doi.org/10.3390/ijerph10093886
  8. Pope, C.A., 3rd, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and Thurston, G.D. (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287, 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  9. Cao, J., Xu, H., Xu, Q., Chen, B. and Kan, H. (2012) Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect., 120, 373-378. https://doi.org/10.1289/ehp.1103671
  10. Reid, J.S., Koppmann, R., Eck, T.F. and Eleuterio, D.P. (2005) A review of biomass burning emissions, part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5, 799-825. https://doi.org/10.5194/acp-5-799-2005
  11. Ema, M., Naya, M., Horimoto, M. and Kato, H. (2013) Developmental toxicity of diesel exhaust: a review of studies in experimental animals. Reprod. Toxicol., 42, 1-17. https://doi.org/10.1016/j.reprotox.2013.06.074
  12. Shen, G. (2017) Mutagenicity of particle emissions from solid fuel cookstoves: a literature review and research perspective. Environ. Res., 156, 761-769. https://doi.org/10.1016/j.envres.2017.05.001
  13. Matzenbacher, C.A., Garcia, A.L.H., dos Santos, M.S., Nicolau, C.C., Premoli, S., Correa, D.S., de Souza, C.T., Niekraszewicz, L., Dias, J.F., Delgado, T.V., Kalkreuth, W., Grivicich, I. and da Silva, J. (2017) DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J. Hazard. Mater., 324, 781-788. https://doi.org/10.1016/j.jhazmat.2016.11.062
  14. Melki, P.N., Ledoux, F., Aouad, S., Billet, S., El Khoury, B., Landkocz, Y., Abdel-Massih, R.M. and Courcot, D. (2017) Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon. Environ. Sci. Pollut. Res. Int., 24, 18782-18797. https://doi.org/10.1007/s11356-017-9389-3
  15. Singh, P., DeMarini, D.M., Dick, C.A., Tabor, D.G., Ryan, J.V., Linak, W.P., Kobayashi, T. and Gilmour, M.I. (2004) Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. Environ. Health Perspect., 112, 820-825. https://doi.org/10.1289/ehp.112-a820
  16. Wu, D., Zhang, F., Lou, W., Li, D. and Chen, J. (2017) Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels. Sci. Total Environ., 605-606, 172-179. https://doi.org/10.1016/j.scitotenv.2017.06.058
  17. Maron, D.M. and Ames, B.N. (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  18. Claxton, L.D., Umbuzeiro Gde, A. and DeMarini, D.M. (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ. Health Perspect., 118, 1515-1522. https://doi.org/10.1289/ehp.1002336
  19. McDonald, J.D., Barr, E.B., White, R.K., Chow, J.C., Schauer, J.J., Zielinska, B. and Grosjean, E. (2004) Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study. Environ. Sci. Technol., 38, 2513-2522. https://doi.org/10.1021/es035024v
  20. DeMarini, D.M. (2004) Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res., 567, 447-474. https://doi.org/10.1016/j.mrrev.2004.02.001
  21. Shin, H.-J., Cho, H.G., Park, C.K., Park, K.H. and Lim, H.B. (2017) Comparative in vitro biological toxicity of four kinds of air pollution particles. Toxicol. Res., 33, 305-313. https://doi.org/10.5487/TR.2017.33.4.305
  22. Lewtas, J. (1993) Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter. Environ. Health Perspect., 100, 211-218. https://doi.org/10.1289/ehp.93100211
  23. Snyder, R.D. and Green, J.W. (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat. Res., 488, 151-169. https://doi.org/10.1016/S1383-5742(01)00055-2
  24. Claxton, L.D., Creason, J., Leroux, B., Agurell, E., Bagley, S., Bryant, D.W., Courtois, Y.A., Douglas, G., Clare, C.B., Goto, S., Quillardet, P., Jagannath, D.R., Kataoka, K., Mohn, G., Nielsen, P.A., Ong, T., Pederson, T.C., Shimizu, H., Nylund, L., Tokiwa, H., Vink, G.J., Wang, Y. and Warshawsky, D. (1992) Results of the IPCS collaborative study on complex mixtures. Mutat. Res., 276, 23-32. https://doi.org/10.1016/0165-1110(92)90053-C
  25. Hughes, T.J., Lewtas, J. and Claxton, L.D. (1997) Development of a standard reference material for diesel mutagenicity in the Salmonella plate incorporation assay. Mutat. Res., 391, 243-258. https://doi.org/10.1016/S1383-5718(97)00075-2
  26. McClellan, R.O., Brooks, A.L., Cuddihy, R.G., Jones, R.K., Mauderly, J.L. and Wolff, R.K. (1982) Inhalation toxicology of diesel exhaust particles. Dev. Toxicol. Environ. Sci., 10, 99-120.
  27. Krause, G., Garganta, F., Vrieling, H. and Scherer, G. (1999) Spontaneous and chemically induced point mutations in HPRT cDNA of the metabolically competent human lymphoblastoid cell line, MCL-5. Mutat. Res., 431, 417-428. https://doi.org/10.1016/S0027-5107(99)00183-9
  28. Lim, W.Y. and Seow, A. (2012) Biomass fuels and lung cancer. Respirology, 17, 20-31. https://doi.org/10.1111/j.1440-1843.2011.02088.x
  29. Kadam, K.L., Forrest, L.H. and Jacobson, W.A. (2000) Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy, 18, 369-389. https://doi.org/10.1016/S0961-9534(00)00005-2
  30. Andreae, M.O. and Merlet, P. (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 15, 955-966. https://doi.org/10.1029/2000GB001382
  31. Oanh, N.T., Bich, T.L., Tipayarom, D., Manadhar, B.R., Prapat, P., Simpson, C.D. and Liu, L.J. (2011) Characterization of particulate matter emission from open burning of fice straw. Atmos. Environ., 45, 493-502. https://doi.org/10.1016/j.atmosenv.2010.09.023
  32. Yang, H.-H., Tsai, C.-H., Chao, M.-R., Su, Y.-L. and Chien, S.-M. (2006) Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmos. Environ., 40, 1266-1274. https://doi.org/10.1016/j.atmosenv.2005.10.032
  33. Pope, C.A. (2000) Review: epidemiological basis for particulate air pollution health standards. Aerosol Sci. Technol., 32, 4-14. https://doi.org/10.1080/027868200303885
  34. Cohn, C.A., Lemieux, C.L., Long, A.S., Kystol, J., Vogel, U., White, P.A. and Madsen, A.M. (2011) Physical-chemical and microbiological characterization, and mutagenic activity of airborne PM sampled in a biomass-fueled electrical production facility. Environ. Mol. Mutagen., 52, 319-330. https://doi.org/10.1002/em.20628
  35. Chakraborty, R. and Mukherjee, A. (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol. Environ. Saf., 72, 838-842. https://doi.org/10.1016/j.ecoenv.2008.09.023
  36. Liu, G., Niu, Z., Van Niekerk, D., Xue, J. and Zheng, L. (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev. Environ. Contam. Toxicol., 192, 1-28.
  37. Cai, H.Y., Guell, A.J., Chatzakis, I.N., Lim, J.Y., Dugwell, D.R. and Kandiyoti, R. (1996) Combustion reactivity and morphological change in coal chars: Effect of pyrolysis temperature, heating rate and pressure. Fuel, 75, 15-24. https://doi.org/10.1016/0016-2361(94)00192-8
  38. Lorenzi, D., Entwistle, J.A., Cave, M. and Dean, J.R. (2011) Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere, 83, 970-977. https://doi.org/10.1016/j.chemosphere.2011.02.020
  39. Dong, T.T. and Lee, B.K. (2009) Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74, 1245-1253. https://doi.org/10.1016/j.chemosphere.2008.11.035
  40. Mostafa, A.R., Hegazi, A.H., El-Gayar, M.S. and Andersson, J.T. (2009) Source characterization and the environmental impact of urban street dusts from Egypt based on hydrocarbon distributions. Fuel, 88, 95-104. https://doi.org/10.1016/j.fuel.2008.08.006
  41. Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y. and Wang, X. (2008) Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ. Pollut., 153, 594-601. https://doi.org/10.1016/j.envpol.2007.09.004