References
- Belhouari, S.B. and Bermak, A. (2004), "Gaussian process for nonstationary time series prediction", Comput. Stat. Data Anal., 47(4), 705-714. https://doi.org/10.1016/j.csda.2004.02.006
- Chen, T., Morris, J. and Martin, E. (2007), "Gaussian process regression for multivariate spectroscopic calibration", Chem. Intell. Lab. Syst., 87(1), 59-71. https://doi.org/10.1016/j.chemolab.2006.09.004
- Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001
- Chou, J., Ngo, N. and Pham, A. (2015), "Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression", J. Comput. Civil Eng., 30(1), 04015002.
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Craven, P. and Wahba, G. (1979), "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation", Numer. Math., 31, 317-403.
- De Veaux, R.D., Psichogios, D.C. and Ungar, L.H. (1993), "A comparison of two nonparametric estimation schemes: MARS and neural networks", Comput. Chem. Eng., 17(8), 819-837. https://doi.org/10.1016/0098-1354(93)80066-V
- Erdala, H.I., Karakurtb, O. and Namlic, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intell., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014
- Friedman, J.H. (1991), "Multivariate adaptive regression spline", Ann. Stat., 19, 1-141. https://doi.org/10.1214/aos/1176347963
- GB 50205 (2001), Code for Acceptance of Construction Quality of Steel Structures, GB National Standard.
- He, H. and Siu, W.C. (2011), "Single image super-resolution using gaussian process regression", IEEE Conference: Computer Vision and Pattern Recognition (CVPR), 449-456.
- Henry, N. and Leonardo, B. (2014), "Descriptive examples of the limitations of artificial neural networks applied to the analysis of independent stochastic data", e-print, arXiv:1404.5598.
- Huang, K., Yang, H., King, I. and Lyu, M.R. (2006), "Maximizing sensitivity in medical diagnosis using biased minimax probability machine", IEEE Eng. Med. Bio. Soc., 53(5), 821-831. https://doi.org/10.1109/TBME.2006.872819
- IS 516 (1959), Method of Tests for Strength of Concrete, Bureau of Indian Standards.
- Kandel, K., Huettmann, F., Suwal, M.K., Ram Regmi, G., Nijman, V., Nekaris, K.A.I., Lama, S.T., Thapa, A., Sharma, H.P. and Subedi, T.R. (2015), "Rapid multi-nation distribution assessment of a charismatic conservation species using open access ensemble model GIS predictions: Red panda (Ailurus fulgens) in the Hindu-Kush Himalaya region", Biolog. Conserv., 181, 150-161. https://doi.org/10.1016/j.biocon.2014.10.007
- Kong, L. and Chen, X. (2015), "Influence mechanism of lightweight aggregate on concrete impermeability: prediction by ANN", Mag. Concrete Res., 67(1), 17-26. https://doi.org/10.1680/macr.14.00127
- Kumar, M., Aiyer, B.G. and Samui, P. (2014), "Machine learning techniques applied to uniaxial compressive strength of oporto granite", Int. J. Performa. Eng., 10(2), 189-195.
- Liong, S.Y., Lim, W.H. and Paudyal, G.N. (2000), "River stage forecasting in Bangladesh: neural network approach", J. Comput. Civil Eng., 14(1), 1-8. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:1(1)
- Moretti, J.F., Minussi, C.R., Akasaki, J.L., Fioriti, C.F., Melges, J.L.P. and Tashima, M.M. (2016), "Prediction of modulus of elasticity and compressive strength of concrete specimens by means of artificial neural networks", Acta Scientiarum. Technol., 38(1), 65-70. https://doi.org/10.4025/actascitechnol.v38i1.27194
- Nedushan, B.A. (2012), "An optimized instance based learning algorithm for estimation of compressive strength of concrete", Eng. Appl. Artif. Intell., 25(5), 1073-1081. https://doi.org/10.1016/j.engappai.2012.01.012
- Ozturk, A.U. and Turan, M.E. (2012), "Prediction of effects of microstructural phases using generalized regression neural network", Constr. Build. Mater., 29, 279-283. https://doi.org/10.1016/j.conbuildmat.2011.10.015
- Pickens, B.A. and King, S.L. (2014), "Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution", Ecol. Model., 285, 1-12. https://doi.org/10.1016/j.ecolmodel.2014.04.013
- Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, MIT Press.
- Razavi, S.V., Jumaat, M.Z., El Shafie, A. and Mohammadi, P. (2012), "Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar, Comput. Concrete, 10(4), 379-390. https://doi.org/10.12989/cac.2012.10.4.379
- Samui, P., Dalkilic, Y.H., Rajadurai, H. and Jagan, J. (2015), "Minimax probability machine: A new tool for modeling", Handbook of Research on Swarm Intelligence in Engineering, 182-210.
- Stegle, O., Fallert, S.V., MacKay, D.J.C. and Brage, S. (2008), "Gaussian process robust regression for noisy heart rate data", IEEE Tran. Biomed. Eng., 55(9), 2143-2151. https://doi.org/10.1109/TBME.2008.923118
- Strohmann, T.R. and Grudic, G.Z. (2002), A Formulation for Minimax Probability Machine Regression, Advances in Neural Information Processing Systems (NIPS) 14, MIT Press.
- Sun, L., Pan, Y. and Gu, W. (2013), "Data mining using regularized adaptive B-splines regression with penalization for multi-regime traffic stream models", J. Adv. Tran., 48(7), 876-890. https://doi.org/10.1002/atr.1232
- Trianto, A. and Kokugan, T. (2002), "Method for improving the performance of porous membrane reactor", J. Chem. Eng. JPN, 34(2), 199-206.
- Viswanathan, R., Kurup, P. and Samui, P. (2015), "Examining efficacy of metamodels in predicting ground water table", Int. J. Performa. Eng., 11(3), 275-281.
- Yang., C.C., Prasher, S.O., Lacroix, R. and Kim, S.H. (2003), "A multivariate adaptive regression splines model for simulation of pesticide transport in soils", Biosyst. Eng., 86(1), 9-15. https://doi.org/10.1016/S1537-5110(03)00099-0
- Yeh, I.C. (1998), "Modeling concrete strength with Augment- Neuron networks", J. Mater. Civil Eng., 10(4), 263-268. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(263)
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (1999), "Design of high performance concrete mixture using neural networks", J. Comput. Civil Eng., 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Yeh, I.C. (2003), "A mix proportioning methodology for fly ash and slag concrete using artificial neural networks", Chung Hua J. Sci. Eng., 1(1), 77-84.
- Yeh, I.C. (2003), "Prediction of strength of fly ash and slag concrete by the use of artificial neural networks", J. Chin. Inst. Civil Hydra. Eng., 15(4), 659-663.
- Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
Cited by
- Corrosion performance of steel reinforcement in concrete admixed with magnesium chloride and sulphate vol.67, pp.1, 2018, https://doi.org/10.1108/acmm-08-2019-2163
- Bending strength diagnosis for corroded reinforced concrete beams with attendance of deterministic, random and fuzzy parameters vol.5, pp.3, 2020, https://doi.org/10.1080/24705314.2020.1765268
- Dynamic Response of Angle Ply Laminates with Uncertainties Using MARS, ANN-PSO, GPR and ANFIS vol.14, pp.2, 2018, https://doi.org/10.3390/ma14020395
- Prediction of Rubber Fiber Concrete Strength Using Extreme Learning Machine vol.7, pp.None, 2018, https://doi.org/10.3389/fmats.2020.582635
- Buckling of laminated composite skew plate using FEM and machine learning methods vol.38, pp.1, 2021, https://doi.org/10.1108/ec-08-2019-0346
- Discharge coefficient estimation for rectangular side weir using GEP and GMDH methods vol.6, pp.2, 2018, https://doi.org/10.12989/acd.2021.6.2.135
- Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete vol.28, pp.2, 2018, https://doi.org/10.12989/cac.2021.28.2.221
- Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete vol.28, pp.46, 2018, https://doi.org/10.1007/s11356-021-15662-z
- Predicting CBR value of stabilized pond ash with lime and lime sludge using multivariate adaptive regression splines vol.3, pp.4, 2021, https://doi.org/10.1088/2631-8695/ac3c9f