참고문헌
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Comput. Mater. Sci., 42(2), 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- Antonaci, P., Bruno, C.L.E., Gliozzi, A.S. and Scalerandi, M. (2010), "Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods", Cement Concrete Res., 40, 1106-1113. https://doi.org/10.1016/j.cemconres.2010.02.017
- Arif, M., Ishihara, T. and Inooka, H. (2001), "Incorporation of experience in iterative learning controllers using locally weighted learning", Autom, 37, 881-888. https://doi.org/10.1016/S0005-1098(01)00030-9
- ASTM C39 (2001), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, Philadelphia, USA.
- ASTM C42 (1999), Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete, Annual Book of ASTM Standards, Philadelphia, USA.
- ASTM C597 (1998), Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards, Philadelphia, USA.
- ASTM C803 (1999), Standard Test Method for Penetration Resistance of Hardened Concrete, Annual Book of ASTM Standards, Philadelphia, USA.
- ASTM C805 (1997), Standard Test Method for Rebound Number of Hardened Concrete, Annual Book of ASTM Standards, Philadelphia, USA.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38, 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Aydin, F. and Saribiyik, M. (2010), "Correlation between Schmidt hammer and destructive compressions testing for concretes in existing buildings", Sci. Res. Essay., 5, 1644-1648.
- Aydogmus, H.Y., Ekinci, A., Erdal, H.I. and Erdal, H. (2015), "Optimizing the monthly crude oil price forecasting accuracy via bagging ensemble models", J. Econ. Int. Finance, 7(5), 127-136. https://doi.org/10.5897/JEIF2014.0629
- Aydogmus, H.Y., Erdal, H.I., Karakurt, O., Namli, E., Turkan, Y.S. and Erdal, H. (2015), "A comparative assessment of bagging ensemble models for modeling concrete slump flow", Comput. Concrete, 16(5), 741-757. https://doi.org/10.12989/cac.2015.16.5.741
- Baykan, U.N., Erdal, M. and Ugur, L.O. (2017), "A fuzzy logic model for prediction of compressive strength of concrete by use of non-destructive test results", Rev. Rom. Mater., 47(1), 54-59.
- Betrie, G.D., Tesfamariam, S., Morin, K.A. and Sadiq, R. (2013), "Predicting copper concentrations in acid mine drainage: A comparative analysis of five machine learning techniques", Environ. Monit. Assess., 185(5), 4171-4182. https://doi.org/10.1007/s10661-012-2859-7
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 25-32.
- Breysse, D. (2012), "Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods", Constr. Build. Mater., 33, 139-163. https://doi.org/10.1016/j.conbuildmat.2011.12.103
- Cheng, M.Y. and Wu, Y.W. (2009), "Evolutionary support vector machine inference system for construction management", Automat. Constr., 18, 597-604. https://doi.org/10.1016/j.autcon.2008.12.002
- Cheng, M.Y., Chou, J.S., Roy, A.F.V. and Wu, Y.W. (2012), "Highperformance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Automat. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004
- Cleary, J.G. and Trigg, L.E. (1995), "K*: an instance-based learner using an entropic distance measure", Proceedings of the 12th International Conference on Machine Learning, 108-114.
- Csepe, Z., Makra, L., Voukantsis, D., Matyasovszky, I., Tusnady, G., Karatzas, K. and Thibaudon, M. (2014), "Predicting daily ragweed pollen concentrations using computational intelligence techniques over two heavily polluted areas in Europe", Sci. Total Environ., 476, 542-52.
- Demirdogen, O., Erdal, H. and Akbaba, A.I. (2017), "Comparing various machine learning methods for prediction of patient revisit intention: A case study", SUJEST, 5(4), 386-401.
- Dias, W. and Pooliyadda, S. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Domone, P. and Soutsos, M. (1994), "An approach to the proportioning of high-strength concrete mixes", Concrete Int., 16, 26-31.
- Ekinci, S., Celebi, U.B., Bala, M., Amasyali, M.F. and Boyaci, U.K. (2011), "Predictions of oil/chemical tanker main design parameters using computational intelligence techniques", Appl. Soft. Comput., 11, 2356-2366. https://doi.org/10.1016/j.asoc.2010.08.015
- Erdal, H. (2015), "Makine ogrenmesi yontemlerinin insaat sektorune katkisi: Basinc dayanimi tahminlemesi", Pamukkale Univ Muh Bilim Derg, 21(3), 109-114.
- Erdal, H. and Karahanoglu, I. (2016), "Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks", Appl. Soft. Comput., 49, 861-867. https://doi.org/10.1016/j.asoc.2016.09.010
- Erdal, H.I. (2013), "Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction", Eng. Appl. Artif. Intell., 26(7), 1689-1697. https://doi.org/10.1016/j.engappai.2013.03.014
- Erdal, H.I. and Karakurt, O. (2013), "Advancing monthly stream flow prediction accuracy of CART models using ensemble learning paradigms", J. Hydrol., 477, 119-128. https://doi.org/10.1016/j.jhydrol.2012.11.015
- Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intell., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014
- Erdal, M. (2002), "Determination of compressive strength of concrete by some non-destructive test methods", M.Sc. Thesis, Gazi University, Ankara.
- Erdal, M. (2009), "Prediction of the compressive strength of vacuum processed concretes using artificial neural network and regression techniques", Sci. Res. Essay., 4(10), 1057-1065.
- Erdal, M. and Simsek, O. (2006), "Investigation of the performance of some non-destructive tests on the determination of compressive strength of vacuum-processed concrete", J. Fac. Eng. Arch. Gazi Univ., 21(1), 65-73.
- Galan, A. (1967), "Estimate of concrete strength by ultrasonic pulse velocity and damping constant", ACI J. Proc., 64(10), 678-684.
- Gupta, R., Kewalramani, M.A. and Goel, A. (2006), "Prediction of concrete strength using neural-expert system", J. Mater. Civil Eng., 18(3), 462-466. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(462)
- Haykin, S. (1999), Neural Networks, A Comprehensive Foundation, 2nd Edition, Prentice Hall.
- Hola, J. and Schabowicz, K. (2005), "Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11, 23-32.
- Iba W.L. (1992), "Induction of one-level decision trees", Ninth International Conference on Machine Learning, Aberdeen.
- Jiawei, H. and Kamber, M. (2001), Data Mining: Concepts and Techniques, Morgan Kaufmann.
- Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Automat. Constr., 15, 374-379. https://doi.org/10.1016/j.autcon.2005.07.003
- Kheder, G.F. (1998), "A two stage procedure for assessment of in-situ concrete strength using combined non-destructive testing", Mater. Struct., 32, 410-417.
- Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Mehta, P.K. and Monterio, P.J.M. (2006), Concrete Structure, Properties and Materials, 3th Edition, Mc Graw-Hill Companies.
- Mielentz, F. (2008), "Phased arrays for ultrasonic investigations in concrete components", J. Nondestruct. Eval., 27, 23-33. https://doi.org/10.1007/s10921-008-0032-6
- Mousavi, S.M., Gandomi, A.H., Alavi, A.H. and Vesalimahmood, M. (2010), "Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares", Struct. Eng. Mech., 36, 225-241. https://doi.org/10.12989/sem.2010.36.2.225
- Namli, E., Erdal, H.I. and Erdal, H. (2016), "Dalgacik donusumu ile beton basinc dayanim tahmininin iyilestirilmesi", Politeknik Dergisi, 19(4), 471-480.
- Neville, A.M. (1993), Properties of Concrete, 3th Edition, Longman Scientific & Technical.
- Painuli, S., Elangovan, M. and Sugumaran, V. (2014), "Tool condition monitoring using K-star algorithm", Exp. Syst. Appl., 41, 2638-2643. https://doi.org/10.1016/j.eswa.2013.11.005
- Portnoy, S. and Koenker, R. (1997), "The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators", Stat. Sci., 12(4), 279-300. https://doi.org/10.1214/ss/1030037960
- Qasrawi, H.Y. (2000), "Concrete strength by combined nondestructive methods simply and reliable predicted", Cement Concrete Res., 30, 739-746. https://doi.org/10.1016/S0008-8846(00)00226-X
- Rajasekaran, S. and Amalraj, R. (2002), "Predictions of design parameters in civil engineering problems using SLNN with a single hidden RBF neuron", Comput. Struct., 80, 2495-2505. https://doi.org/10.1016/S0045-7949(02)00213-4
- Rajasekaran, S. and Lavanya, S. (2007), "Hybridization of genetic algorithm with immune system for optimization problems in structural engineering", Struct. Multidisc. Optim., 34, 415-429. https://doi.org/10.1007/s00158-006-0084-0
- Rajasekaran, S., Suresh, D, and Pai, GAV. (2002), "Application of sequential learning neural networks to civil engineering modeling problems", Eng. Comput., 18, 138-147. https://doi.org/10.1007/s003660200012
- Ramyar, K. and Kol, P. (1996), "Destructive and non-destructive test methods for estimating the strength of concrete", Cement Concrete World, 2, 46-54.
- Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009) "Prediction of longterm effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037
- Solis-Carcano, R. and Moreno, EI. (2008), "Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity", Constr. Build. Mater., 22, 1225-1231. https://doi.org/10.1016/j.conbuildmat.2007.01.014
- Subasi, S. (2009), "Prediction of mechanical properties of cement containing class C fly ash by using artificial neural network and regression technique", Sci. Res. Essay., 4(4), 289-297.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonic., 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- Tufekci, P. (2014), "Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning method", Int. J. Elect. Power Energy Syst., 60, 126-140. https://doi.org/10.1016/j.ijepes.2014.02.027
- Turkan, Y.S., Aydogmus, H.Y. and Erdal, H. (2016), "The prediction of the wind speed at different heights by machine learning methods", IJOCTA, 6(2), 179-187.
- Wang, W. and Xu, Z. (2004), "A heuristic training for support vector regression", Neurocomput., 61, 259-275. https://doi.org/10.1016/j.neucom.2003.11.012
- Wang, Y. and Witten, I. (1997), "Inducing model trees for continuous classes", Ninth European Conference on Machine Learning, Prague, Czech Republic.
- Windsor Probe Test System Inc. (1994), WPS 500 Windsor Probe Test System Operating Instructions.
- Witten, I.H. and Frank, E. (2005), Data Mining: Practical Machine Learning Tools And Technique, Morgan Kaufmann Publishers.
- Yaprakli, T.S. and Erdal, H. (2015), "Bankacilik sektorunde pazarlama karmasi elemanlarinin onceliklerinin belirlenmesi: Erzurum ili ornegi", JASSS, 38, 481-500.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28, 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (2007), "Modeling slump flow of concrete using secondorder regressions and artificial neural networks", Cement Concrete Compos., 29, 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yeh, I.C. and Lien, L.C. (2009), "Knowledge discovery of concrete material using genetic operation trees", Exp. Syst. Appl., 36(3), 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004
- Zarandi, M.F., Turksen, I.B., Sobhani, J. and Ramezanianpour, A.A. (2008), "Fuzzy polynomial neural networks for approximation of the compressive strength of concrete", Appl. Soft. Comput., 8(1), 488-498. https://doi.org/10.1016/j.asoc.2007.02.010