DOI QR코드

DOI QR Code

초임계 이산화탄소를 이용하여 추출된 도라지 종자유의 특성

Characterization of Platycodon grandiflorum Seeds Oil Extracted by Supercritical Carbon Dioxide

  • 김양지 (동덕여자대학교 식품영양학과) ;
  • 임지영 (국민대학교 식품영양학과) ;
  • 김석중 (동덕여자대학교 식품영양학과)
  • Kim, Yangji (Department of Food and Nutrition, Dongduk Women's University) ;
  • Imm, Jee-Young (Department of Food and Nutrition, Kookmin University) ;
  • Kim, Seok Joong (Department of Food and Nutrition, Dongduk Women's University)
  • 투고 : 2018.01.26
  • 심사 : 2018.03.02
  • 발행 : 2018.03.30

초록

본 연구에서는 초임계 이산화탄소 추출을 이용해 도라지(Platycodon grandiflorum A. DC) 종자로부터 유지를 제조하여 새로운 식용유지로서의 물리화학적 특성을 조사하였다. Soxhlet 용매 추출에 비해 6,000 psi 압력 및 $40^{\circ}C$ 온도조건에서의 초임계 이산화탄소 추출로 더 많은 유지를 얻을 수 있었고 특히 볶은 종자로부터는 32.7%까지 얻을 수 있었다. 볶은 종자로부터 얻은 초임계 도라지 종자유는 시판 대두유나 들깨유와 마찬가지로 대부분 중성지질로 구성되어 있음을 TLC 분석으로 확인하였다. 또한 이 유지는 고도로 불포화된 지질로 대두유나 들깨유보다 linoleic acid(73.27%) 함량이 훨씬 높았으며 그 다음으로 oleic acid(13.16%) 함량이 높았다. 유지의 물리화학적 특성으로, 비중 0.92, 점도 45.37 cP, 굴절률 1.48, 색도 L=47.30, a=-3.69, b=25.72, 요오드가 141.57 g $I_2/100g$ oil, 비누화가 191.21 mg KOH/g oil, 산가는 2.60 mg KOH/g oil 였다. 이런 특성들 중에서 지질의 불포화도와 관련이 있는 굴절률, 점도 및 요오드가는 두 시판 유지들의 중간값을 나타내었다. Rancimat 법으로 측정한 산화유도기간을 비교한 결과에서도 초임계 추출 도라지 종자유(2.03 hr)는 대두유(2.94 hr)보다는 낮으나 들깨유(1.79 hr)보다는 높은 중간값을 나타내었다. 종자 볶음 공정은 유지의 추출 수율을 증가시킬뿐만 아니라 콜레스테롤에스터 함량과 산가 감소에 긍정적 효과도 있었다. 이상으로부터, 초임계 이산화탄소 추출을 통해 볶은 도라지종자로부터 높은 수율로 유지를 제조할 수 있었고 이 유지는 식용유지로서 적합한 특성을 가진다고 판단되었다.

In this study, oil of Platycodon grandiflorum seeds was prepared using supercritical carbon dioxide extraction (SCE) and its physicochemical indices as a new edible oil were investigated. Compared to Soxhlet solvent extraction, SCE under the condition of 6,000 psi at $40^{\circ}C$ produced more oil, especially from the roasted seeds to 32.7%. TLC analysis showed triacylglycerols accounted for most of the oil obtained from roasted Platycodon grandiflorum seeds by SCE similarly to commercial soybean oil or perilla seeds oil. The oil had highly unsaturated lipid with considerable amount of linoleic acid(73.27%) much more than two commercial oils followed by oleic acid(13.16%). Physicochemical properties of the oil were as follows; specific gravity, 0.92; dynamic viscosity, 45.37 cP; refractive index, 1.48; color, L=47.30, a=-3.69, b=25.72; iodine value, 141.57 g $I_2/100g$ oil; saponification value, 191.21 mg of KOH/g of oil; acid value, 2.60 mg of KOH/g of oil. Among those, refractive index, viscosity and iodine value, which were related to unsaturation degree of lipid, were ranged between those of two commercial oils. The oxidation stability of oil(2.03 hr) was also ranged between less stable perilla seeds oil(1.79 hr) and more stable soybean oil(2.94 hr) based on the induction time measured by Rancimat assay. In addition to extraction yield increase, seeds roasting provided further benefits such as reductions of cholesterol ester content and acid value without change in fatty acid composition. In conclusion, oil was extracted from the roasted Platycodon grandiflorum seeds at high yield by supercritical carbon dioxide and it seemed to have proper characteristics as a edible oil.

키워드

참고문헌

  1. K. H. Lim, A Medicinal Phytology (The details). p.281, Dong Myoung Sa, (1971).
  2. N. J. Sung, J. K. Seo, "Medical Action of Perennial Platycodon radix," Proc. of Inst. Agr. Res. Util. Symposium for 50th Anniversary GSNU, pp. 35-47, (1998).
  3. H. C. Kim, Hanyakyakrihak, pp. 350-352, Jibmoondang, (2001).
  4. H. K. Kim, J. S. Choi, D. S. Yoo, Y. H. Choi, G. H. Yon, K. S. Hong, B. H. Lee, H. J. Kim, E. H. Kim, B. K. Park, Y. C. Jeong, Y. S. Kim, S. Y. Ryu, “HPLC Analysis of Saponins in Platycodi radix,” Korean J. Pharmacogn., Vol. 38, No. 2, pp. 192-196, (2007).
  5. T. Kubota, H, Kitatani, H. Hinoh, “The Structure of Platycogenic Acids A, B, and C, Further Triterpenoid Constituents of Platycodon grandiflorum A. De Candolle,” J. Chem. Soc. D: Chem. Comm., Vol. 22, No. 22, pp. 1313-1314, (1969).
  6. A. Tada, Y. Kaneiwa, S. Shibata, “Studies on the Saponins of the Root of Platycodon grandiflorum A. De Candolle. I. Isolation and the Structure of Platycodin-D,” Chem. Pharm. Bull., Vol. 23, No. 11, pp. 2965-2972, (1975). https://doi.org/10.1248/cpb.23.2965
  7. C. Y. Shin, W. J. Lee, E. B. Lee, E. Y. Choi, K. H. Ko, “Platycodin D and $D_3$ Increase Airway Mucin Release in vivo and in vitro in Rats and Hamsters,” Planta Med., Vol. 68, No. 3, pp. 221-225, (2002). https://doi.org/10.1055/s-2002-23130
  8. C. Wang, G. B. Schuller Levis, E. B. Lee, W. R. Levis, D. W. Lee, B. S. Kim, S. Y. Park, E. Park, “Platycodin D and $D_3$ Isolated from the Root of Platycodon grandiflorum Modulate the Production of Nitric Oxide and Secretion of TNF-${\alpha}$ in Activated RAW 264.7 Cells,” Int. Immunopharmacol., Vol. 4, No. 8, pp. 1039-1049, (2004). https://doi.org/10.1016/j.intimp.2004.04.005
  9. E. Nyakudya, J. H. Jeong, N. K. Lee, Y. S. Jeong, “Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits,” Prev. Nutr. Food Sci., Vol. 19, No. 2, pp. 59-68, (2014). https://doi.org/10.3746/pnf.2014.19.2.059
  10. J. W. Lee, S. H. Ji, G. S. Kim, K. S. Song, Y. Um, O. T. Kim, Y. Lee, C. P. Hong, D. H. Shin, C. K. Kim, S. E. Lee, Y. S. Ahn, D. Y. Lee, “Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS,” Int. J. Mol. Sci., Vol. 16, No. 11, pp. 26786-26796, (2015). https://doi.org/10.3390/ijms161125993
  11. C. H. Jeong, K. H. Shim, "Chemical Composition and Antioxidative Activities of Platycodon grandiflorum Leaves and Stems," J. Korean Soc. Food Sci. Nutr. Vol. 35, No. 5, pp. 511-515, (2006). https://doi.org/10.3746/jkfn.2006.35.5.511
  12. C. H. Jeong, G. N. Choi, J. H. Kim, J. H. Kwak, D. O. Kim, Y. J. Kim, H. J. Hoe, “Antioxidant Activities of the Aerial Parts of Platycodon grandiflorum,” Food Chem., Vol. 118, No. 2, pp. 278-282, (2010). https://doi.org/10.1016/j.foodchem.2009.04.134
  13. R. M. Zhao, L. Liu, Q. S. Guo, “Influence of Exogenous Substance on Germination of Platycodon grandiflorum Seeds,” Zhongguo Zhong Yao Za Zhi, Vol. 31, No. 12, pp. 966-968, (2006).
  14. Q. S. Guo, R. M. Zhao, L. Liu, Q. T. Dong, Z. W. Fu, “Study on Seed Quality Test and Quality Standard of Platycodon grandiflorum,” Zhongguo Zhong Yao Za Zhi, Vol. 32, No. 5, pp. 377-381, (2007).
  15. E. C. M. Coxworth, “Oil and Protein Content, and Oil Composition of the Seeds of Some Plants of the Canadian Prairies,” JAOCS, Vol. 42, No. 10, pp. 891-894, (1965). https://doi.org/10.1007/BF02541188
  16. A. Inada H. Murata, M. Somekawa, T. Nakanishi, “Phytochemical Studies of Seeds of Medicinal Plants. II. A New Dihydroflavonol Glycoside and a New 3-methyl-1-butanol Glycoside from Seeds of Platycodon grandiflorum A. De Candolle,” Chem. Pharm. Bull., Vol. 40, No. 11, pp. 3081-3083, (1992). https://doi.org/10.1248/cpb.40.3081
  17. H. J. Kim, Y. S. Cho, “Characteristics of Rhizome Rot Incidence of Platycodon grandiflorus by Ridge Width and Depth and Cultivation Period in the Seeding Place,” Korean J. Med. Crop Sci., Vol. 19, No. 4, pp. 246-250, (2011). https://doi.org/10.7783/KJMCS.2011.19.4.246
  18. S. G. Moon, S. H. Jeong, C. M. Choi, “Classification of the Edible Plants on the Market in Busan,” Korean. J. Life Sci., Vol. 13, No. 6, pp. 764-774, (2003). https://doi.org/10.5352/JLS.2003.13.6.764
  19. E. Reverchon, I. De Marco, “Supercritical Fluid Extraction and Fractionation of Natural Matter,” J. Supercrit. Fluids, Vol. 38, No. 2, pp. 146-166, (2006). https://doi.org/10.1016/j.supflu.2006.03.020
  20. M. M. R. de Melo, A. J. D. Silvestre, C. M. Silva, "Supercritical Fluid Extraction of Vegetable Matrices: Applications, Trends and Future Perspectives of a Convincing Green Technology," J. Supercrit. Fluids, Vol. 92, pp. 115-176, (2014). https://doi.org/10.1016/j.supflu.2014.04.007
  21. Y. K. Cho, H. S Kim, J. W Kim, S. Y. Lee, W. S. Kim, J. H. Ryu, G. B. Lim, “Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide,” Korean J. Biotechnol. Bioeng., Vol. 19, No. 6, pp. 427-432, (2004).
  22. J. A. P. Coelho, A. P. Pereira, R. L. Mendes, A. M. F. Palavra, “Supercritical Carbon Dioxide Extraction of Foeniculum vulgare volatile oil,” Flavour Fragr. J., Vol. 18, No. 4, pp. 316-319, (2003). https://doi.org/10.1002/ffj.1223
  23. A. B. A. de Azevedo, T. G. Kieckbush, A. K. Tashima, R. S. Mohamed, P. Mazzafera, S. A. B. Vieira de Melo, “Extraction of Green Coffee Oil Using Supercritical Carbon Dioxide,” J. Supercrit. Fluids, Vol. 44, No. 2, pp. 186-192, (2008). https://doi.org/10.1016/j.supflu.2007.11.004
  24. E. Riera, Y. Golas, A. Blanco, J. A. Gallego, M. Blasco, A. Mulet, “Mass Transfer Enhancement in Supercritical Fluids Extraction by Means of Power Ultrasound,” Ultrason. Sonochem., Vol. 11, No. 3-4, pp. 241-244, (2004). https://doi.org/10.1016/j.ultsonch.2004.01.019
  25. J. Martinez, A. Carolina de Aguiar, “Extraction of Triacylglycerols and Fatty Acids Using Supercritical Fluids-Review,” Curr. Anal. Chem., Vol. 10, No. 1, pp. 67-77, (2014). https://doi.org/10.2174/1573411011410010006
  26. AOAC, "Official Method of Analysis of AOAC," 18th ed., International Association of Official Analytical Communities, (2005).
  27. T. White, S. Bursten, D. Federighi, R. A. Lewis, E. Nudelman, “High-resolution Separation and Quantification of Neutral Lipid and Phospholipid Species in Mammalian Cells and Sera by Multi-one-dimensional Thin-layer Chromatography,” Anal. Biochem., Vol. 258, No. 1, pp. 109-117, (1998). https://doi.org/10.1006/abio.1997.2545
  28. H.T. Slover, E. Lanza, “Quantitative Analysis of Food Fatty Acids by Capillary Gas Chromatography,” JAOCS, Vol. 56, No. 12, pp. 933-943, (1979). https://doi.org/10.1007/BF02674138
  29. S. J. Kim, “Inhibitory Effect of Perilla Sprouts Extracts on Oxidation of Perilla Oil,” J. of Korean Oil Chemists' Soc., Vol. 29, No. 2, pp. 330-338, (2012).
  30. N. Siulapwa, A. Mwambungu, "Nutritional Value of Differently Processed Soybean Seeds," Int. J. Res. Agric. Food Sci. Vol. 2, No. 6, pp. 8-16, (2014),
  31. P. Li, M. A. A. Gasmalla, W. Zhang, J. Liu, R. Bing, R. Yang, "Effects of Roasting Temperatures and Grinding Type on the Yields of Oil and Protein Obtained by Aqueous Extraction Processing," J. Food Eng., Vol. 173, pp. 15-24, (2016). https://doi.org/10.1016/j.jfoodeng.2015.10.031
  32. F.J. Eller, S. C. Cermak, S. L. Taylor, "Supercritical Carbon Dioxide Extraction of Cuphea Seed Oil," Ind. Crops Products, Vol 33, pp. 554-557, (2011). https://doi.org/10.1016/j.indcrop.2010.12.017
  33. J. Orsavova, L. Misurcova, J. V. Ambrozova, R. Vicha, J. Mlcek, “Fatty Acids Composition of Vegetable Oils and Its Contribution, to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids,” Int. J. Mol. Sci., Vol. 16, No. 6, pp. 12871-12890, (2015). https://doi.org/10.3390/ijms160612871
  34. E. Stahl, E. Schultz, H. M. Mangold, “Extraction of Seed Oils with Liquid and Supercritical Carbon Dioxide,” J. Agric. Food Chem., Vol. 28, No. 6, pp. 1153-1157, (1980). https://doi.org/10.1021/jf60232a023
  35. J. P. Friedrich, G. R. List, “Characterization of Soybean Oil Extracted by Supercritical Carbon Dioxide and Hexane,” J. Agric. Food Chem., Vol. 30, No. 1, pp. 192-193, (1982). https://doi.org/10.1021/jf00109a044
  36. H. J. Lee, T. H. Moon, B. S. Noh, P. S. Chang, G. G, Lee, S. J. Kim, S. H. Ryu, K. W. Lee, Food Chemistry, 3rd ed., p.140, Soohaksa, (2014).