DOI QR코드

DOI QR Code

Investigation of Growth Characteristics of Salix gracilistyla Clones for Promoting Woody Biomass Resources

목질계 바이오매스 생산을 위한 갯버들의 생장특성

  • Lee, Hyunseok (Forest Tree Improvement Division, National Institute of Forest Science) ;
  • An, Chanhoon (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kang, Junwon (Forest Tree Improvement Division, National Institute of Forest Science) ;
  • Lee, Wiyoung (Forest Tree Improvement Division, National Institute of Forest Science) ;
  • Yi, Jae-Seon (Division of Forest Science, Kangwon National University)
  • 이현석 (국립산림과학원 임목육종과) ;
  • 안찬훈 (국립산림과학원 산림약용자원연구소) ;
  • 강준원 (국립산림과학원 임목육종과) ;
  • 이위영 (국립산림과학원 임목육종과) ;
  • 이재선 (강원대학교 산림과학부)
  • Received : 2017.10.25
  • Accepted : 2018.02.27
  • Published : 2018.03.31

Abstract

This study was investigated to select superior population and clones of Salix gracilistyla for promoting woody biomass resources through creating of short rotation coppices (SRC). Plant materials were collected from seven different population groups of S. gracilistyla and planted at two different nursery sites in Chuncheon and Yongin. Height and root collar diameter showed statistically significant differeces among population, nursery, and annual growth for three years (p<0.01). Aboveground biomass was harvested to investigate dry weight after 3 years from planting, the Youngwol population showed the highest yield as $4.8kg\;DW\;plant^{-1}$ in Chuncheon nursery which was more than double yield compared to the other nursery planted plants. However, Hongcheon and Wonju populations as $3.3kg\;plant^{-1}$, showed the best yield in Yongin nursery. In addition, there was a significant difference between collected populations and nurseries. But there was statistically significant different interaction between population (Pop) and nursery (Nur) (F value = 3.51, p<0.01). Therefore, the superior populations selected by this experiment could be cultivated as an excellent variety for woody biomass resources through the clonal test.

본 연구는 갯버들의 생장 특성을 기반으로 단기순환벌채림(Short rotation coppices)을 조성하고, 바이오매스 생산 및 자원화 방안을 모색하기 위하여 우수집단 및 개체를 선발하고자 수행하였다. 갯버들이 서식하는 7개 집단에서 시료를 수집하여 2개의 시험지(춘천과 용인)에 집단별로 시험구를 설치하고, 우수집단 및 개체선발에 있어서 각 요인이 미치는 유의적인 차이를 조사하였다. 수고와 근원경은 시험지, 수집집단 및 연간생장 간에 통계적으로 유의한 차이를 보였다(p<0.01). 식재 3년 후 지상부의 수확량은 춘천시험지에서는 영월집단이 개체 당 평균 4.8 kg(dw)으로 나타났으며, 이는 각 집단별 전체 평균의 2배 이상의 수확량으로 보여진다. 용인시험지에서는 홍천과 원주집단의 수확량이 개체 당 평균 3.3kg(dw)으로 가장 높게 나타났다. 두 시험지에서 수확량이 높게 나타난 집단은 일치하지 않았으나 수집 집단(Pop)과 시험지(Nur) 간의 상호작용에서 유의성이 인정되어서, 각 시험지별로 수확량이 우수한 집단을 제시할 수 있었다(F value = 3.51, p<0.01). 이러한 결과를 토대로 선발된 집단의 영양계 검정을 이용하여 목질계 바이오매스 자원화를 위한 우수 자원을 육성할 수 있을 것이다.

Keywords

References

  1. Allard, R.W. and Bradshaw, A.D. 1964. Implications of genotype-environment interactions in applied plant breeding. Crop Science 4: 503-508. https://doi.org/10.2135/cropsci1964.0011183X000400050021x
  2. Aylott, M.J., Casella, E., Tubby, I., Street, N.R., Smith, P. and Taylor, G. 2008. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytologist 178: 358-370. https://doi.org/10.1111/j.1469-8137.2008.02396.x
  3. Barnes, R., Burley, J. and Gibson, G., 1984. Genotypeenvironment interactions in tropical pines and their structure of breeding population. Oxford England p.22.
  4. Cameron, K.D., Phillips, I.S., Kopp, R.F., Volk, T.A., Maynard, C.A., Abrahamson, L.P. and Smart, L.B. 2008. Quantitative genetics of traits indicative of biomass production and heterosis in 34 full-sib $F_1$ salix eriocephala families. Bioenergy Research 1: 80-90. https://doi.org/10.1007/s12155-008-9006-x
  5. Chun, S.H., Hyun, J.Y. and Choi, J.K. 1999. A study on the distribution patterns of Salix gracilistyla and Phragmites japonica communities according to micro-landforms and substractes of the stream corridor. Journal of the Korean Institute of Landscape Architecture 27(2): 58-68.
  6. Conroy, S.D. and Svejcar, T.J. 1991. Willow planting success as influenced by site factors and cattle grazing in Northeastern California. Journal of Range Management 44(1): 59-63. https://doi.org/10.2307/4002640
  7. GARES. 2008. Methods of soil and compost analysis. Gyeonggido Agricultural Research and Extension Services, Hwaseong, Korea.
  8. IPCC. 2014. Synthesis report of the fifth assessment report of the intergovermental panel on climate change(IPCC). WMO and UNEP. Cambridge university press. Cambridge. New York. U.S.A.
  9. Labrecque M., and Teodorescu TI. 2005. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass and Bioenergy 29: 1-9. https://doi.org/10.1016/j.biombioe.2004.12.004
  10. McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37-46. https://doi.org/10.1016/S0960-8524(01)00118-3
  11. Karp, A., Hanley, S.J., Trybush, S.O., Macalpine, W., Pei, M. and Shield, I. 2011. Genetic improvement of willow for bioenergy and biofuels. Journal of Integrative Plant Biology 53(2): 151-165. https://doi.org/10.1111/j.1744-7909.2010.01015.x
  12. Mortensen, J., Nielsen, K.H. and JOrgensen, U. 1998. Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass and Bioenergy 15(6): 457-466. https://doi.org/10.1016/S0961-9534(98)00056-7
  13. Serapiglia, M.J., Cameron, K.D., Stipanovic, A.J., Abrahamson, L.P., Volk, T.A. and Smart, L.B. 2013. Yield and woody biomass traits of novel shrub willow hybrids at two comtrasting sites. Bioenergy Research 6: 533-546. https://doi.org/10.1007/s12155-012-9272-5
  14. Serapiglia, M.J., Gouker, F.G. and Smart, L.B. 2014. Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biology 14: 74. https://doi.org/10.1186/1471-2229-14-74
  15. Serapiglia, M.J., Gouker, F.G., Hart, J.F., Unda, F., Mansfield, S.D., Stipanovic, A.J., and Smart, L.B. 2015. Ploidy level affects important biomass traits of novel shrub willow(Salix) hybrids. BioEnergy Research 8: 259-269. https://doi.org/10.1007/s12155-014-9521-x
  16. Volk, T.A., Abrahamson, L.P., Cameron, K.D., Castellano, P., Corbin, T., Fabio, E., Johnson, G., Kuzovkina-Eischen, Y., Labrecque, M., Miller, R., Sidders, D., Smart, L.B., Staver, K., Stanosz, G.R. and Rees, K.V. 2011. Yields of willow biomass crops across a range of sites in North America. Aspects of Applied Biology 112: 67-74.
  17. Walle, IV., Camp, N.V., Casteele, L.V., Verheyen, K., Lemeur, R. 2007. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I-Biomass production after 4 years of tree growth. Biomass & bioenergy 31(5): 267-275. https://doi.org/10.1016/j.biombioe.2007.01.019
  18. Weih, M., Rönnberg-Wastljung, A.C. and Glynn, C. 2006. Genetic basis of phenotypic correlations among growth traits in hybird willow(Salix dasyclados $\times$ S. viminalis) grown under two water regimes. New Phytologist 170: 467-477. https://doi.org/10.1111/j.1469-8137.2006.01685.x
  19. Yeo, J.K., Woo, K.S., Koo, Y.B. and Kim, Y.S. 2007. Growth performance and adaptability of three-year-old poplar and willow clones in a riparian area. Journal of the Korea Society of Environmental Restoration Technology 10(5): 40-50.