DOI QR코드

DOI QR Code

Image Processing and Cryo-Transmission Electron Microscopy; Example of Human Proteasome

  • Choi, Hyosun (BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University) ;
  • Jeon, Hyunbum (Nanobioimaging Center, National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Noh, Seulgi (BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University) ;
  • Kwon, Ohkyung (Nanobioimaging Center, National Instrumentation Center for Environmental Management, Seoul National University) ;
  • Mun, Ji Young (Department of Structure and Function of Neural Network, Korea Brain Research Institute)
  • Received : 2018.03.12
  • Accepted : 2018.03.27
  • Published : 2018.03.30

Abstract

Cryo-transmission electron microscopy (cryo-TEM) allows us to perform structural analysis of a analyses of large protein complexes, which are difficult to analyze using X-ray crystallography or nuclear magnetic resonance. The most common examples of proteins used are ribosomes and proteasomes. In this paper, we briefly describe the advantage of cryo-TEM and the process of two-dimensional classification by considering a human proteasome as an example.

Keywords

References

  1. Baker L A and Rubinstein J L (2010) Radiation damage in electron cryomicroscopy. Methods Enzymol. 481, 371-388.
  2. Booth D S, Avila-Sakar A, and Cheng Y (2011) Visualizing proteins and macromolecular complexes by negative stain EM: from grid preparation to image acquisition. J. Vis. Exp. (58). doi: 10.3791/3227.
  3. Brilot A F, Chen J Z, Cheng A, Pan J, Harrison S C, Potter C S, Carragher B, Henderson R, and Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177, 630-637. https://doi.org/10.1016/j.jsb.2012.02.003
  4. Campbell M G, Cheng A, Brilot A F, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison S C, Potter C S, Carragher B, and Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryomicroscopy. Structure 20, 1823-1828. https://doi.org/10.1016/j.str.2012.08.026
  5. Cheng Y, Grigorieff N, Penczek P A, and Walz T (2015) A primer to singleparticle cryo-electron microscopy. Cell 161, 438-449. https://doi.org/10.1016/j.cell.2015.03.050
  6. Carlo S and Stark H (2010) Cryonegative staining of macromolecular assemblies. Methods Enzymol. 481, 127-145.
  7. Dubochet J (2012) Cryo-EM--the first thirty years. J. Microsc. 245, 221-224. https://doi.org/10.1111/j.1365-2818.2011.03569.x
  8. Dubochet J, Adrian M, Chang J J, Homo J C, Lepault J, Mcdowall A W, and Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129-228. https://doi.org/10.1017/S0033583500004297
  9. Dubochet J and Mcdowall A W (1981) Vitrification of pure water for electron microscopy. J. Microsc. 124, 3-4.
  10. Frank J (1975) Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1, 159-162. https://doi.org/10.1016/S0304-3991(75)80020-9
  11. Frank J, Verschoor A, and Boublik M (1981) Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353-1355. https://doi.org/10.1126/science.7313694
  12. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117-125. https://doi.org/10.1016/j.jsb.2006.05.004
  13. Henderson R and Unwin P N (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28-32. https://doi.org/10.1038/257028a0
  14. Hohn M, Tang G, Goodyear G, Baldwin P R, Huang Z, Penczek P A, Yang C, Glaeser R M, Adams P D, and Ludtke S J (2007) SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47-55. https://doi.org/10.1016/j.jsb.2006.07.003
  15. Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley D J, Shi Y, and Wang F (2016) Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc. Natl. Acad. Sci. U S A 113, 2642-2647. https://doi.org/10.1073/pnas.1601561113
  16. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis M I, Pragani R, Boxer M B, Earl L A, Milne J L S, and Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165, 1698-1707. https://doi.org/10.1016/j.cell.2016.05.040
  17. Nogales E and Scheres S H (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58, 677-689.
  18. Ohi M, Li Y, Cheng Y, and Walz T (2004) Negative staining and image classification--powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23-34. https://doi.org/10.1251/bpo70
  19. Radermacher M, Wagenknecht T, Verschoor A, and Frank J (1987) Threedimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113-136. https://doi.org/10.1111/j.1365-2818.1987.tb01333.x
  20. Rames M, Yu Y, and Ren G (2014) Optimized negative staining: a highthroughput protocol for examining small and asymmetric protein structure by electron microscopy. J. Vis. Exp. (90), e51087.
  21. Scheres S H (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530. https://doi.org/10.1016/j.jsb.2012.09.006
  22. Tang G, Peng L, Baldwin P R, Mann D S, Jiang W, Rees I, and Ludtke S J (2007) EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38-46. https://doi.org/10.1016/j.jsb.2006.05.009