산화물 전자재료의 분극 및 차폐 전하 영상화

  • 홍승범 (한국과학기술원 신소재공학과)
  • Published : 2018.04.01

Abstract

Keywords

References

  1. Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics. (Wiley, New York, 1997).
  2. M. M. Atalla, E. Tannenbaum, and E. J. Scheibner, "Stabilization of Silicon Surfaces by Thermally Grown Oxides," Bell Syst. Tech. J., vol. 38, no. 3, pp. 749-783, 1959. https://doi.org/10.1002/j.1538-7305.1959.tb03907.x
  3. R. H. Dennard, "Field-Effect Transistor Memory," US Patent 3,387,286 (1968).
  4. D. Kang et al., "256 Gb 3 b/Cell V-NAND Flash Memory With 48 Stacked WL Layers," IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 210-217, 2017. https://doi.org/10.1109/JSSC.2016.2604297
  5. S. Hong, O. Auciello, and D. Wouters, Emerging non-volatile memories. New York: Springer, 2014.
  6. S. Hong, S. M. Nakhmanson, and D. D. Fong, "Screening mechanisms at polar oxide heterointerfaces," Reports on Progress in Physics, vol. 79. 076501, 2016. https://doi.org/10.1088/0034-4885/79/7/076501
  7. S. V. Kalinin, B. G. Sumpter, and R. K. Archibald, "Big-deep-smart data in imaging for guiding materials design," Nat. Mater., vol. 14, no. 10, pp. 973-980, 2015. https://doi.org/10.1038/nmat4395
  8. G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett., vol. 56, no. 9, pp. 930-934, 1986. https://doi.org/10.1103/PhysRevLett.56.930
  9. H. Ko et al., "High-resolution field effect sensing of ferroelectric charges," Nano Lett., vol. 11, no. 4, pp. 1428-1433, 2011. https://doi.org/10.1021/nl103372a
  10. S. H. Chang et al., "X-ray Irradiation Induced Reversible Resistance Change in Pt/$TiO_2$/Pt Cells," ACS Nano, vol. 8, no. 2, pp. 1584-1589, 2014. https://doi.org/10.1021/nn405867p
  11. C. Campbell et al., "Effect of nanopatterning on mechanical properties of Lithium anode," Sci. Rep., vol. 8, 2514, 2018. https://doi.org/10.1038/s41598-018-20773-8
  12. S. Hong et al., "Principle of ferroelectric domain imaging using atomic force microscope," J. Appl. Phys., vol. 89, no. 2, pp. 1377-1386, 2001. https://doi.org/10.1063/1.1331654
  13. H. Kim, S. Hong, and D. W. Kim, "Ambient effects on electric-field-induced local charge modification of $TiO_2$," Appl. Phys. Lett., vol. 100, 022901, 2012. https://doi.org/10.1063/1.3675630
  14. H. Park, J. Jung, D. K. Min, S. Kim, S. Hong, and H. Shin, "Scanning resistive probe microscopy: Imaging ferroelectric domains," Appl. Phys. Lett., vol. 84, no. 10, pp. 1734-1736, 2004. https://doi.org/10.1063/1.1667266
  15. S. Hong, S. Tong, W. I. Park, Y. Hiranaga, Y. Cho, and A. Roelofs, "Charge gradient microscopy," Proc. Natl. Acad. Sci., vol. 111, no. 18, pp. 6566-6569, 2014. https://doi.org/10.1073/pnas.1324178111
  16. S. Kim, K. No, and S. Hong, "Visualization of ion transport in Nafion using electrochemical strain microscopy," Chem. Commun., vol. 52, no. 4, pp. 831-834, 2016. https://doi.org/10.1039/C5CC07412F
  17. M. Owczarek et al., "Flexible ferroelectric organic crystals," Nat. Commun., vol. 7, 13108, 2016. https://doi.org/10.1038/ncomms13108
  18. C. Kittel, Introduction to Solid State Physics. (Wiley, New York, 2010).
  19. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices. (Pearson Prentice Hall, 2006).
  20. R. Feynman, R. Leighton, M. Sands, and S. Treiman, The Feynman lectures on physics - Mainly Electromagnetism and Matter. 1964.
  21. K. A. Mauritz, "Permittivity," Wikipedia, 2018. [Online]. Available: https://en.wikipedia.org/wiki/Permittivity.
  22. S. Tong, I. W. Jung, Y. Y. Choi, S. Hong, and A. Roelofs, "Imaging Ferroelectric Domains and Domain Walls Using Charge Gradient Microscopy: Role of Screening Charges," ACS Nano, vol. 10, no. 2, 2568-2574 (2016). https://doi.org/10.1021/acsnano.5b07551
  23. R. V. Wang et al., "Reversible chemical switching of a ferroelectric film," Phys. Rev. Lett., vol. 102, 047601 (2009). https://doi.org/10.1103/PhysRevLett.102.047601
  24. A. Gomez, M. Gich, A. Carretero-Genevrier, T. Puig, and X. Obradors, "Piezo-generated charge mapping revealed through direct piezoelectric force microscopy," Nat. Commun., vol. 8, 1113 (2017). https://doi.org/10.1038/s41467-017-01361-2
  25. S. O. Hruszkewycz et al., "Imaging local polarization in ferroelectric thin films by coherent X-ray bragg projection ptychography," Phys. Rev. Lett., vol. 110, 177601 (2013). https://doi.org/10.1103/PhysRevLett.110.177601
  26. S. Hong et al., "Nanoscale piezoresponse studies of ferroelectric domains in epitaxial $BiFeO_3$ nanostructures," J. Appl. Phys., vol. 105, 061619 (2009). https://doi.org/10.1063/1.3055412
  27. S. Hong et al., "Effect of metal-insulator-semiconductor structure derived space charge field on the tip vibration signal in electrostatic force microscopy," J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 18, no. 6, 2688 (2000). https://doi.org/10.1116/1.1323968
  28. S. Tong, W. I. Park, Y. Y. Choi, L. Stan, S. Hong, and A. Roelofs, "Mechanical removal and rescreening of local screening charges at ferroelectric surfaces," Phys. Rev. Appl., vol. 3, 014003 (2015). https://doi.org/10.1103/PhysRevApplied.3.014003
  29. Y. Y. Choi, S. Tong, S. Ducharme, A. Roelofs, and S. Hong, "Charge collection kinetics on ferroelectric polymer surface using charge gradient microscopy," Sci. Rep., vol. 6, 25087 (2016). https://doi.org/10.1038/srep25087
  30. S. Hong et al., "High resolution study of domain nucleation and growth during polarization switching in Pb$(Zr,Ti)O_3$ ferroelectric thin film capacitors," J. Appl. Phys., vol. 86, no. 1, 607 (1999). https://doi.org/10.1063/1.370774
  31. S. Hong and N. Setter, "Evidence for forward domain growth being rate-limiting step in polarization switching in<111>- oriented - $Pb(Zr_{0.45}Ti_{0.55})O_3$ thin-film capacitors," Appl. Phys. Lett., vol. 81, no. 18, 3437 (2002). https://doi.org/10.1063/1.1517396
  32. Y. Kim et al., "Effect of local surface potential distribution on its relaxation in polycrystalline ferroelectric films," J. Appl. Phys., vol. 107, 054103 (2010). https://doi.org/10.1063/1.3290953
  33. J. Woo, S. Hong, D. K. Min, H. Shin, and K. No, "Effect of domain structure on thermal stability of nanoscale ferroelectric domains," Appl. Phys. Lett., vol. 80, no. 21, 4000 (2002). https://doi.org/10.1063/1.1481537
  34. H. Choi, S. Hong, T. H. Sung, and K. No, "Effects of surface morphology on retention loss of ferroelectric domains in poly(vinylidenefluorideco-trifluoroethylene) thin films," Appl. Phys. Lett., vol. 99, 092905 (2011). https://doi.org/10.1063/1.3632042
  35. H. Paik, Y. Y. Choi, S. Hong, and K. No, "Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films," Sci. Rep., vol. 5, 13209 (2015). https://doi.org/10.1038/srep13209
  36. Y. Kim, S. Hong, H. Park, S. H. Kim, D. K. Min, and K. No, "Grain/domain interaction antd its effect on bit formation in ferroelectric films," in Integrated Ferroelectrics, vol. 78, 255 (2006). https://doi.org/10.1080/10584580600660595
  37. Y. Kim et al., "Tip traveling and grain boundary effects in domain formation using piezoelectric force microscopy for probe storage applications," Appl. Phys. Lett., vol. 89, 172909 (2006). https://doi.org/10.1063/1.2370502
  38. I. Stolichnov et al., "Unusual size effect on the polarization patterns in micron-size $Pb(Zr,Ti)O_3$ film capacitors," Appl. Phys. Lett., vol. 80, no. 25, 4804 (2002). https://doi.org/10.1063/1.1489478
  39. Y. Kim et al., "Injection charge assisted polarization reversal in ferroelectric thin films," Appl. Phys. Lett., vol. 90, 072910 (2007). https://doi.org/10.1063/1.2679902
  40. N. Setter et al., "Ferroelectric thin films: Review of materials, properties, and applications," J. Appl. Phys., vol. 100, 051606 (2006). https://doi.org/10.1063/1.2336999
  41. S. Hong and N. Park, Resistive probe storage: Read/write mechanism, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Eds: S. Kalinin and A. Gruverman, Springer, New York, 2007), Chapter 4.6.
  42. S. Hong and Y. Kim, Ferroelectric probe storage devices, in Emerging Non-volatile Memories (Eds: S. Hong, O. Auciello, D. Wouters, Springer, New York, 2014), Chapter 7.
  43. J. Woo et al., "Quantitative analysis of the bit sizedependence on the pulse width and pulse voltage in ferroelectric memory devices using atomic force microscopy," J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 19, no. 3, 818 (2001). https://doi.org/10.1116/1.1364697
  44. J. B. Goodenough and K. S. Park, "The Li-ion rechargeable battery: A perspective," Journal of the American Chemical Society, vol. 135, no. 4. pp. 1167-1176 (2013). https://doi.org/10.1021/ja3091438
  45. D. Kim et al., "Fabrication of vertically aligned ferroelectric polyvinylidene fluoride mesoscale rod arrays," J. Appl. Polym. Sci., vol. 130, no. 6, 3842 (2013). https://doi.org/10.1002/app.39415
  46. R. Agarwal et al., "Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate," Phys. Rev. B, vol. 97, 054109 (2018). https://doi.org/10.1103/PhysRevB.97.054109