DOI QR코드

DOI QR Code

Soft robotics: A solid prospect for robotizing the natural organisms

  • Tahir, Ahmad M. (Department of Mechanical Engineering (DIME), PMAR Labs, University of Genoa) ;
  • Naselli, Giovanna A. (Department of Mechanical Engineering (DIME), PMAR Labs, University of Genoa) ;
  • Zoppi, Matteo (Department of Mechanical Engineering (DIME), PMAR Labs, University of Genoa)
  • Received : 2018.02.02
  • Accepted : 2018.03.20
  • Published : 2018.03.25

Abstract

Innovation is considered as key to ensure continuous advancement and firm progress in any field. Robotics, with no exception, has gained triumph and approval based on its strength to address divers range of applications as well as its capacity to adapt new ways and means to enhance its applicability. The core of novelty in robotics technology is the perpetual curiosity of human beings to imitate natural systems. This desire urges to continuously explore and find new feet. In the past, contemporary machines, in different shapes, sizes and capabilities, were developed that can perform variety of tasks. The major advantage of these developments was the ability to exhibit superior control, strength and repeatability than the corresponding systems they were replicating. However, these systems were rigid and composed of hard an underlying structure, which is a constraint in bringing into being the compliance that exists in natural organisms. Inspiration of achieving such compliance and to take the full advantage of the design scheme of biological systems compelled researchers and scientists to develop systems avoiding conventional rigid structures. This ambition, to produce biological duos, needs soft and more flexible materials and structures to realize innovative robotic systems. This new footpath to craft biological mockups facilitates further to exploit new materials, novel design methodologies and new control techniques. This paper presents an appraisal on such innovative comprehensions, conferring to their design specific importance. This demonstration is potentially useful to prompt the novelty of soft robotics.

Keywords

References

  1. Akella, P. and Cutkosky, M. (1989), "Manipulating with soft fingers: Modeling contacts and dynamics", Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, U.S.A., May.
  2. Alford, W., Wilkes, D., Kawamura, K. and Pack, R. (1997), "Flexible human integration for holonic manufacturing systems", Proceedings of the World Manufacturing Congress, Auckland, New Zealand, November.
  3. Anon. (2010), Athlete Robot, < http://www.isi.imi.i.utokyo.ac.jp/-niiyama/projects/proj_athlete_en.html>.
  4. The First Robot, Created in 400BCE, Was a Steam-Powered Pigeon, .
  5. Bao, G., Cai, S., Wang, Z., Xu S.S., Huang, P., Yang, Q., Xu, F. and Zhang, L. (2013), "Flexible pneumatic robotic actuator FPA and its applications", Proceedings of the International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, December.
  6. Bertetto, A. and Ruggiu, M. (2001), "In-pipe inch-worm pneumatic flexible robot", Proceedings of the International Conference on Advanced Intelligent Mechatronics, Como, Italy, July.
  7. Bogue, R. (2016), "Flexible and soft robotic grippers: The key to new markets?", Ind. Robot, 43(3), 258-263. https://doi.org/10.1108/IR-01-2016-0027
  8. Bowler, C.J., Caldwell, D.G. and Medrano-Cerda, G.A. (1996), "Pneumatic muscle actuators: Musculature for an anthropomorphic robot arm", Proceedings of the IEE Colloquium on Actuator Technology: Current Practice and New Developments, London, U.K., May.
  9. Bubic, F. (1992), Flexible Robotic Links and Manipulator Trunks Made Thereform, U.S. Patent No. 5080000, U.S. Patent and Trademark Office, Washington, D.C., U.S.A.
  10. Caines, R.S. (1991), Robotic Fluid-Actuated Muscle Analogue, U.S. Patent No.5021064, U.S. Patent and Trademark Office, Washington, D.C., U.S.A.
  11. Calisti, M., Arienti, A., Renda, F., Levy, G., Hochner, B., Mazzolai, B., Dario, P. and Laschi, C. (2012), "Design and development of a soft robot with crawling and grasping capabilities", Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, Minnesota, U.S.A., May.
  12. Cambron, M., Peters II, R., Wilkes, D., Christopher, J. and Kawamura, K. (1998), "Human-centered robot design and the problem of grasping", Proceedings of the 3rd International Conference on Advanced Mechatronics ICAM'98 -Innovative Mechatronics for the 21st Century, Okayama, Japan, August.
  13. Chou, C.P. and Hannaford, B. (1996), "Measurement and modeling of McKibben pneumatic artificial muscles", IEEE Trans. Robot. Autom., 12(1), 90-102. https://doi.org/10.1109/70.481753
  14. Cianchetti, M. (2013), "The octopus as paradigm for soft robotics", Proceedings of the 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, November.
  15. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P. and Laschi, C. (2011), "Design concept and validation of a robotic arm inspired by the octopus", Mater. Sci. Eng. C, 31(6), 1230-1239. https://doi.org/10.1016/j.msec.2010.12.004
  16. Cianchetti, M., Licofonte, A., Follador, M., Rogai, F. and Laschi, C. (2014), "Bioinspired soft actuation system using shape memory alloys", Actuators, 3(4), 226-244. https://doi.org/10.3390/act3030226
  17. Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C. and Dario, P. (2009), "A new design methodology of electrostrictive actuators for bio-inspired robotics", Sensor. Actuat. B Chem., 142(1), 288-297. https://doi.org/10.1016/j.snb.2009.08.039
  18. Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P. and Menciassi, A. (2014), "Soft robotics technologies to address shortcomings in today's minimally invasive surgery: The STIFF-FLOP approach", Soft Robot., 1(2), 122-131. https://doi.org/10.1089/soro.2014.0001
  19. Clarke, R. (1993), "Asimov's laws of robotics: Implications for information technology-Part I", Comput., 26(12), 53-61. https://doi.org/10.1109/2.247652
  20. Deng, Z., Stommel, M. and Xu, W. (2016), "A novel soft machine table for manipulation of delicate objects inspired by caterpillar locomotion", IEEE/ASME Trans. Mechatron., 21(3), 1702-1710. https://doi.org/10.1109/TMECH.2016.2519333
  21. Feng, G. and Yen, S. (2015), "Micromanipulation tool replaceable soft actuator with gripping force enhancing and output motion converting mechanisms", Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaoshiung, Taiwan, June.
  22. Follador, M., Cianchetti, M., Arienti, A. and Laschi, C. (2012), "A general method for the design and fabrication of shape memory alloy active spring actuators", Smart Mater. Struct., 21(11), 115029. https://doi.org/10.1088/0964-1726/21/11/115029
  23. Gellius, A. and Beloe, W. (1795), The Attic Nights of Aulus Gellius, J. Johnson, London, U.K.
  24. Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G. and Laschi, C. (2012), "A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm", Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, Minnesota, U.S.A., May.
  25. Grissom M, D., Chitrakaran, V., Dienno, D., Csencits, M., Pritts, M., Jones, B., McMahan, W., Dawson, D., Rahn, C. and Walker, I. (2006), "Design and experimental testing of the OctArm soft robot manipulator", Proceedings of the SPIE Defense and Security Symposium, Orlando, Florida, U.S.A., April.
  26. Groen, F., van der Smagt, P. and Schulten, K. (1996), "Analysis and control of a rubbertuator arm", Biol. Cybernet., 75(5), 433-440. https://doi.org/10.1007/s004220050308
  27. Hakozaki, M., Nakamura, K. and Shinoda, H. (1999), "Telemetric artificial skin for soft robot", Proceedings of the International Conference on Solid State Sensors and Actuators (Transducers'99), Sendai, Japan, June.
  28. Hamerlain, M. (1995), "An anthropomorphic robot arm driven by artificial muscles using a variable structure control", Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 95 'Human Robot Interaction and Cooperative Robots', Pittsburgh, Pennsylvania, U.S.A., August.
  29. Hoggett, R. (2012), Artificial Muscle, Joseph Laws McKibben (American), .
  30. Iida, F. and Laschi, C. (2011), "Soft robotics: Challenges and perspectives", Proc. Comput. Sci., 7, 99-102. https://doi.org/10.1016/j.procs.2011.12.030
  31. Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X. and Whitesides, G. (2011), "Soft robotics for chemists", Angewandte Chemie, 123(8), 1930-1935. https://doi.org/10.1002/ange.201006464
  32. Jung, K., Koo, J., Nam, J., Lee, Y. and Choi, H. (2007), "Artificial annelid robot driven by soft actuators", Bioinspir. Biomimet., 2(2), S42-S49. https://doi.org/10.1088/1748-3182/2/2/S05
  33. Kang, R., Branson, D., Zheng, T., Guglielmino, E. and Caldwell, D. (2013), "Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures", Bioinspir. Biomimet., 8(3), 036008. https://doi.org/10.1088/1748-3182/8/3/036008
  34. Kang, R., Guglielmino, E., Zullo, L., Branson, D., Godage, I. and Caldwell, D. (2016), "Embodiment design of soft continuum robots", Adv. Mech. Eng., 8(4), 168781401664330. https://doi.org/10.1177/1687814016643302
  35. Kim, S., Laschi, C. and Trimmer, B. (2013), "Soft robotics: A bioinspired evolution in robotics", Trend. Biotechnol., 31(5), 287-294. https://doi.org/10.1016/j.tibtech.2013.03.002
  36. Klute, G.K., Czerniecki, J.M. and Hannaford, B. (1999), "McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence", Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, Georgia, U.S.A., September.
  37. Kotsanas.com. (2016), The Flying Pigeon of Archytas, .
  38. Kure, K., Kanda, T., Suzumori, K. and Wakimoto, S. (2008), "Flexible displacement sensor using injected conductive paste", Sensor. Actuat. A Phys., 143(2), 272-278. https://doi.org/10.1016/j.sna.2007.11.031
  39. Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M. and Dario, P. (2009), "Design of a biomimetic robotic octopus arm", Bioinspir. Biomimet., 4(1), 015006. https://doi.org/10.1088/1748-3182/4/1/015006
  40. Lu, X., Xu, W. and Li, X. (2017), "A soft robotic tongue-mechatronic design and surface reconstruction", IEEE/ASME Trans. Mechatron., 22(5), 2102-2110. https://doi.org/10.1109/TMECH.2017.2748606
  41. Margheri, L., Laschi, C. and Mazzolai, B. (2012), "Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements", Bioinspir. Biomimet., 7(2), 025004. https://doi.org/10.1088/1748-3182/7/2/025004
  42. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P. and Laschi, C. (2012), "Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions", Bioinspir. Biomimet., 7(2), 025005. https://doi.org/10.1088/1748-3182/7/2/025005
  43. McMahan, W., Chitrakaran, V., Csencsits, M., Dawson, D., Walker, I.D., Jones, B.A., Pritts, M., Dienno, D., Grissom, M. and Rahn, C.D. (2006), "Field trials and testing of the OctArm continuum manipulator", Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, U.S.A., May.
  44. Noh, Y., Sareh, S., Back, J., Wurdemann, H., Ranzani, T., Secco, E., Faragasso, A., Liu, H. and Althoefer, K. (2014), "A three-axial body force sensor for flexible manipulators", Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, May-June.
  45. Obaji, M. and Zhang, S. (2013), "Investigation into the force distribution mechanism of a soft robot gripper modeled for picking complex objects using embedded shape memory alloy actuators", Proceedings of the 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, November.
  46. Pack, R.T. and Iskarous, M. (1994), "The use of the soft arm for rehabilitation and prosthetic", Proceedings of the Annual Conference Rehabilitation Engineering and Assistive Technology Society of North America 1994, Nashville, Tennessee, U.S.A., June.
  47. Pritts, M.B. and Rahn, C.D. (2004), "Design of an artificial muscle continuum robot", Proceedings of the International Conference on Robotics and Automation (ICRA04), New Orleans, Louisiana, U.S.A.
  48. Ranzani, T., Cianchetti, M., Gerboni, G., Falco, I. and Menciassi, A. (2016), "A soft modular manipulator for minimally invasive surgery: Design and characterization of a single module", IEEE Trans. Robot., 32(1), 187-200. https://doi.org/10.1109/TRO.2015.2507160
  49. Renda, F., Cianchetti, M., Giorelli, M., Arienti, A. and Laschi, C. (2012), "A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm", Bioinspir. Biomimet., 7(2), 025006. https://doi.org/10.1088/1748-3182/7/2/025006
  50. Rieffel, J., Knox, D., Smith, S. and Trimmer, B. (2014), "Growing and evolving soft robots", Artif. Life, 20(1), 143-162. https://doi.org/10.1162/ARTL_a_00101
  51. Rus, D. and Tolley, M. (2015), "Design, fabrication and control of soft robots", Nature, 521(7553), 467-475. https://doi.org/10.1038/nature14543
  52. Sasaki, D., Noritsugu, T. and Takaiwa, M. (2005), "Development of active support splint driven by pneumatic soft actuator (ASSIST)", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April.
  53. Sasaki, D., Noritsugu, T., Takaiwa, M. and Kataoka, Y. (2005), "Development of pneumatic wearable power assist device for human arm "ASSIST"", Proceedings of the JFPS International Symposium on Fluid Power, Tsukuba, Japan, November.
  54. Shepherd, R., Ilievski, F., Choi, W., Morin, S., Stokes, A., Mazzeo, A., Chen, X., Wang, M. and Whitesides, G. (2011), "Multigait soft robot", Proc. National Acad. Sci., 108(51), 20400-20403. https://doi.org/10.1073/pnas.1116564108
  55. Shintake, J., Schubert, B., Rosset, S., Shea, H. and Floreano, D. (2015), "Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy", Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, September-October.
  56. Stone, R.S.W. and Brett, P.N. (1995), "A flexible pneumatic actuator for gripping soft irregular shaped objects", Proceedings of the IEE Colloquium on Innovative Actuators for Mechatronic Systems, London, U.K., October.
  57. Suzumori, K. (1989), "Flexible microactuator (1st Report, Static characteristics of 3 DOF actuator)", Trans. Jap. Soc. Mech. Eng. Series C, 55(518), 2547-2552. https://doi.org/10.1299/kikaic.55.2547
  58. Suzumori, K. (1990), "Flexible microactuator. (2nd Report, Dynamic characteristics of 3 DOF actuator)", Trans. Jap. Soc. Mech. Eng. Series C, 56(527), 1887-1893. https://doi.org/10.1299/kikaic.56.1887
  59. Suzumori, K. (1996), "Elastic materials producing compliant robots", Robot. Autonom. Syst., 18(1-2), 135-140. https://doi.org/10.1016/0921-8890(95)00078-X
  60. Suzumori, K., Endo, S., Kanda, T., Kato, N. and Suzuki, H. (2007), "A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot", Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, April.
  61. Suzumori, K., Iikura, S. and Tanaka, H. (1991), "Development of flexible microactuator and its applications to robotic mechanisms", Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, U.S.A., April.
  62. Suzumori, K., Iikura, S. and Tanaka, H. (1991), "Flexible microactuator for miniature robots", Proceedings of the Micro Electro Mechanical Systems, MEMS'91, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Nara, Japan, January.
  63. Suzumori, K., Iikura, S. and Tanaka, H. (1992), "Applying a flexible microactuator to robotic mechanisms", IEEE Control Syst., 12(1), 21-27. https://doi.org/10.1109/37.120448
  64. Suzumori, K., Koga, A. and Haneda, R. (1994), "Microfabrication of integrated fmas using stereo lithography", Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems, MEMS'94, Oiso, Japan, January.
  65. Suzumori, K., Koga, A., Kondo, F. and Haneda, R. (1996), "Integrated flexible microactuator systems", Robotica, 14(5), 493-498. https://doi.org/10.1017/S0263574700019974
  66. Suzumori, K., Kondo, F. and Tanaka, H. (1993), "Micro-walking robot driven by flexible microactuator", J. Robot. Mechatron., 5(6), 537-541 https://doi.org/10.20965/jrm.1993.p0537
  67. Suzumori, K., Maeda, T., Wantabe, H. and Hisada, T. (1997), "Fiberless flexible microactuator designed by finite-element method", IEEE/ASME Trans. Mechatron., 2(4), 281-286. https://doi.org/10.1109/3516.653052
  68. Suzumori, K., Miyagawa, T., Kimura, M. and Hasegawa, Y. (1999), "Micro inspection robot for 1-in pipes", IEEE/ASME Trans. Mechatron., 4(3), 286-292. https://doi.org/10.1109/3516.789686
  69. Takashi, Y., Naoyuki, I., Makoto, M. and Yoshinobu, A. (2012), "Picking up operation of thin objects by robot arm with two-fingered parallel soft gripper", Proceedings of the 2012 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Munich, Germany, May.
  70. Toshiba.co.jp. (1997), Toshiba: Press Releases 21 February, 1997, .
  71. Trimmer, B.A., Lin, H.T., Baryshyan, A., Leisk, G.G. and Kaplan, D.L. (2012), "Towards a biomorphic soft robot: Design constraints and solutions", Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, June.
  72. Trivedi, D. and Rahn, C. (2014), "Model-based shape estimation for soft robotic manipulators: The planar case", J. Mech. Robot., 6(2), 021005. https://doi.org/10.1115/1.4026338
  73. Trivedi, D., Dienno, D. and Rahn, C. (2008a), "Optimal, model-based design of soft robotic manipulators", J. Mech. Des., 130(9), 091402. https://doi.org/10.1115/1.2943300
  74. Trivedi, D., Lotfi, A. and Rahn, C. (2008b), "Geometrically exact models for soft robotic manipulators", IEEE T. Robot., 24(4), 773-780. https://doi.org/10.1109/TRO.2008.924923
  75. Udupa, G., Sreedharan, P. and Aditya, K. (2010), "Robotic gripper driven by flexible microactuator based on an innovative technique", Proceedings of the 2010 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), Seoul, South Korea, October.
  76. Wilkes, D., Pack, R., Alford, A. and Kawamura, K. (1997), A Design Philosophy for Socially Intelligent Service Robots, in American Association for Artificial Intelligence, AAAI Press Technical Report FS-97-02, AAAI Press, 140-145.
  77. Yamaha, Y., Iwanaga, Y., Fukunaga, M., Fujimoto, N., Ohta, E., Morizono, T. and Umetani, Y. (1999), "Soft viscoelastic robot skin capable of accurately sensing contact location of objects", Proceedings of the 1999 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems(MFI'99), Taipei, Taiwan, August.
  78. Yamamoto, Y., Kure, K., Iwai, T., Kanda, T. and Suzumori, K. (2007), "Flexible displacement sensor using piezoelectric polymer for intelligent FMA", Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS2007), San Diego, California, U.S.A., October-November.