DOI QR코드

DOI QR Code

Optimum static balancing of a robot manipulator using TLBO algorithm

  • Rao, R. Venkata (Department of Mechanical Engineering, S.V. National Institute of Technology) ;
  • Waghmare, Gajanan (Department of Mechanical Engineering, Sandip Institute of Engineering and Management)
  • Received : 2015.12.01
  • Accepted : 2017.12.07
  • Published : 2018.03.25

Abstract

This paper presents the performance of Teaching-Learning-Based Optimization (TLBO) algorithm for optimum static balancing of a robot manipulator. Static balancing of robot manipulator is an important aspect of the overall robot performance and the most demanding process in any robot system to match the need for the production requirements. The average force on the gripper in the working area is considered as an objective function. Length of the links, angle between them and stiffness of springs are considered as the design variables. Three robot manipulator configurations are optimized. The results show the better or competitive performance of the TLBO algorithm over the other optimization algorithms considered by the previous researchers.

Keywords

References

  1. Basu, M. (2014), "Teaching-learning-based optimization algorithm for multi-area economic dispatch", Energy, 68, 21-28. https://doi.org/10.1016/j.energy.2014.02.064
  2. Baykasoglu, A., Hamzadayi, A. and Kose, S.Y. (2014), "Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases", Inform. Sci., 276, 204-218. https://doi.org/10.1016/j.ins.2014.02.056
  3. Camp, V. and Farshchin, M. (2014), "Design of space trusses using modified teaching-learning-based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020
  4. Deb, K. (2000), "An efficient constraint handling method for genetic algorithm", Comput. Meth. Appl. Mech. Eng., 186(2-4), 311-338. https://doi.org/10.1016/S0045-7825(99)00389-8
  5. Filaretov, V.F. and Vukobratovic, M.K. (1993), "Static balancing and dynamic decoupling of the motion of manipulation robots", Mechatronics, 3(6), 767-782. https://doi.org/10.1016/0957-4158(93)90062-7
  6. Hassan, A. and Abomoharam, M. (2017), "Modeling and design optimization of a robot gripper mechanism", Robot. Comput. Integrat. Manufact., 46, 94-103. https://doi.org/10.1016/j.rcim.2016.12.012
  7. Martini, A., Troncossi, M., Carricato, M. and Rivola, A. (2015), "Static balancing of a parallel kinematics machine with linear delta architecture: Theory, design and numerical investigation", Mech. Machine Theor., 90, 128-141. https://doi.org/10.1016/j.mechmachtheory.2015.03.003
  8. Medina, M.A., Das, S., Coello, C.A.C. and Ramirez, J.M. (2014), "Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow-a comparative study", Eng. Appl. Artif. Intell., 32, 10-20. https://doi.org/10.1016/j.engappai.2014.01.016
  9. Moghadam, A. and Seifi, A.R. (2014), "Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization", Energy Convers. Manage., 77, 208-215. https://doi.org/10.1016/j.enconman.2013.09.036
  10. Niknam, T., Abarghooee, R.A. and Narimani, M.R. (2012), "A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems", Eng. Appl. Artif. Intell., 25, 1577-1588. https://doi.org/10.1016/j.engappai.2012.07.004
  11. Ouyang, P.R., Li, Q., and Zhang, W.J. (2003), "Integrated design of robotic mechanisms for force balancing and trajectory tracking", Mechatronics, 13(8-9), 887-905. https://doi.org/10.1016/S0957-4158(03)00007-2
  12. Ouyang, P.R. and Zhang, W.J. (2004), "Force balancing of robotic mechanisms based on adjustment of kinematic parameters", J. Mech. Des., 127(3), 433-440.
  13. Petkovic, D., Issa, M., Pavlovic, N.D., Zentner, L. and Cojbasic, Z. (2012), "Adaptive neuro fuzzy controller for adaptive compliant robotic gripper", Expert Syst. Appl., 39(18), 13295-13304. https://doi.org/10.1016/j.eswa.2012.05.072
  14. Petkovic, D., Pavlovic, N.D., Cojbasic, Z. and Pavlovic, N.T. (2013a), "Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces", Expert Syst. Appl., 40(1), 281-286. https://doi.org/10.1016/j.eswa.2012.07.076
  15. Petkovic, D., Issa, M., Pavlovic, N.D. and Zentner, L. (2013b), "Intelligent rotational direction control of passive robotic joint with embedded sensors", Expert Syst. Appl., 40(4), 1265-1273. https://doi.org/10.1016/j.eswa.2012.08.064
  16. Petkovic, D., Issa, M., Pavlovic, N.D. and Zentner L. (2013c), "Design of compliant robotic joint with embedded-sensing elements of conductive silicone rubber", Industr. Robot, 40(2), 143-157. https://doi.org/10.1108/01439911311297748
  17. Petkovic, D., Issa, M., Pavlovic, N.D. and Zentner, L. (2013d), "Application of the TRIZ creativity enhancement approach to design of passively compliant robotic joint", J. Adv. Manufact. Technol., 67(1), 865-875. https://doi.org/10.1007/s00170-012-4530-4
  18. Petkovic, D., Issa, M., Pavlovic, N.D. and Zentner, L. (2013e), "Application of the TRIZ creativity enhancement approach to the design of a passively adaptive compliant robotic gripper", Assembly Autom., 33(3), 231-239. https://doi.org/10.1108/AA-10-2013-079
  19. Pierezan, J., Freire, R.Z., Weihmann, L., Reynoso-Meza, G. and dos Santos Coelho, L. (2017), "Static force capability optimization of humanoids robots based on modified self-adaptive differential evolution", Comput. Oper. Res., 84, 205-215. https://doi.org/10.1016/j.cor.2016.10.011
  20. Quaglia, G. and Yin, Z. (2015), "Static balancing of planer articulated robots", Front. Mech. Eng., 10(4), 326-343. https://doi.org/10.1007/s11465-015-0355-9
  21. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
  22. Rao, R.V., Savsani, V.J. and Balic, J. (2012a), "Teaching-learning-based optimization algorithm for unconstrained and constrained real parameter optimization problems", Eng. Optim., 44(12), 1447-1462. https://doi.org/10.1080/0305215X.2011.652103
  23. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2012b), "Teaching-learning-based optimization: A novel optimization method for continuous non-linear large scale problems", Inform. Sci., 183(1), 1-15. https://doi.org/10.1016/j.ins.2011.08.006
  24. Rao, R.V. and Savsani, V.J. (2012), Mechanical Design Optimization Using Advanced Optimization Techniques, Springer-Verlag, London, U.K.
  25. Rao, R.V. and Patel, V. (2012), "An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems", J. Ind. Eng. Comput., 3(4), 535-560.
  26. Rao, R.V. and Patel, V. (2013), "Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems", J. Ind. Eng. Comput., 4(1), 29-50.
  27. Rao, R.V. (2016), Teaching Learning Based Optimization Algorithm, in Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, Springer International Publishing, Cham, Switzerland.
  28. Rao, R.V. and Waghmare, G.G. (2014), "A comparative study of a teaching-learning-based optimization algorithm on multiobjective unconstrained and constrained functions", J. King Saud Univ. Comput. Inform. Sci., 26(3), 332-346. https://doi.org/10.1016/j.jksuci.2013.12.004
  29. Rao, R.V., Kalyankar, V.D. and Waghmare, G. (2014), "Parameters optimization of selected casting processes using teaching-learning based optimization algorithm", Appl. Math. Modell., 38(23), 5592-5608. https://doi.org/10.1016/j.apm.2014.04.036
  30. Russo, A., Sinatra, R., and Xi, F. (2005), "Static balancing of parallel robots", Mech. Machine Theor., 40(2), 191-202. https://doi.org/10.1016/j.mechmachtheory.2004.06.011
  31. Saravanan, R., Ramabalan, S. and Babu, P.D. (2008), "Optimum static balancing of an industrial robot mechanism", Eng. Appl. Artif. Intell., 21(6), 824-834. https://doi.org/10.1016/j.engappai.2007.09.007
  32. Sangamesh, R.D. and Ananthasuresh, G.K. (2012), "Perfect static balance of linkages by addition of springs but not auxiliary bodies", J. Mech. Robot., 4(2), 1-12.
  33. Satapathy, S.C. and Naik, A. (2014), "Modified teaching-learning-based optimization algorithm for global numerical optimization- A comparative study", Swarm Evol. Comput., 16, 28-37. https://doi.org/10.1016/j.swevo.2013.12.005
  34. Segla, S. (1998), "Statical balancing of a robot mechanism with the aid of a genetic algorithm", Mech. Machine Theor., 33(1-2), 163-174. https://doi.org/10.1016/S0094-114X(97)00012-8
  35. Simionescu, I. and Ciupitu, L. (2000a), "The static balancing of the industrial robot arms: Part II: Continuous balancing", Mech. Machine Theor., 35(9), 1299-1311. https://doi.org/10.1016/S0094-114X(99)00068-3
  36. Simionescu, I. and Ciupitu, L. (2000b), "The static balancing of the industrial robot arms: Part I: Discrete balancing", Mech. Machine Theor., 35(9), 1287-1298. https://doi.org/10.1016/S0094-114X(99)00067-1
  37. Sultana, S. and Roy, P.K. (2014), "Optimal capacitor placement in radial distribution systems using teaching learning based optimization", J. Elec. Power Energy Syst., 54, 387-398. https://doi.org/10.1016/j.ijepes.2013.07.011
  38. Zou, F., Wang, L., Hei, X., Chen, D. and Yang, D. (2014), "Teaching-learning-based optimization with dynamic group strategy for global optimization", Inform. Sci., 273, 112-131. https://doi.org/10.1016/j.ins.2014.03.038