DOI QR코드

DOI QR Code

A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene, npgA, in Aspergillus nidulans

  • Song, Ha-Yeon (Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Choi, Dahye (Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University) ;
  • Han, Dong-Min (Division of Biological Sciences, Wonkwang University) ;
  • Kim, Dae-Hyuk (Department of Molecular Biology and Department of Bioactive Material Science, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Kim, Jung-Mi (Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University)
  • Received : 2018.10.22
  • Accepted : 2018.11.05
  • Published : 2018.12.31

Abstract

To develop a convenient promoter analysis system for fungi, a null-pigment mutant (NPG) of Aspergillus nidulans was used with the 4'-phosphopantetheinyl transferase (PPTase) gene, npgA, which restores the normal pigmentation in A. nidulans, as a new reporter gene. The functional organization of serially deleted promoter regions of the A. nidulans trpC gene and the Cryphonectria parasitica crp gene in filamentous fungi was representatively investigated to establish a novel fungal promoter assay system that depends on color complementation of the NPG mutant with the PPTase npgA gene. Several promoter regions of the trpC and crp genes were fused to the npgA gene containing the 1,034-bp open reading frame and the 966-bp 3' downstream region from the TAA, and the constructed fusions were introduced into the NPG mutant in A. nidulans to evaluate color recovery due to the transcriptional activity of the sequence elements. Serial deletion of the trpC and crp promoter regions in this PPTase reporter assay system reaffirmed results in previous reports by using the fungal transformation step without a laborious verification process. This approach suggests a more rapid and convenient system than conventional analyses for fungal gene expression studies.

Keywords

References

  1. Ghim CM, Lee SK, Takayama S, et al. The art of reporter proteins in science: past, present and future applications. BMB Rep. 2010;43:451-460. https://doi.org/10.5483/BMBRep.2010.43.7.451
  2. Xiong AS, Peng RH, Zhuang J, et al. Advances in directed molecular evolution of reporter genes. Crit Rev Biotechnol. 2012;32:133-142. https://doi.org/10.3109/07388551.2011.593503
  3. Nordeen SK. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988;6:454-458.
  4. Jain VK, Magrath IT. A chemiluminescent assay for quantitation of beta-galactosidase in the femtogram range: application to quantitation of beta-galactosidase in lacZ-transfected cells. Anal Biochem. 1991;199:119-124. https://doi.org/10.1016/0003-2697(91)90278-2
  5. Bronstein I, Fortin J, Stanley PE, et al. Chemiluminescent and bioluminescent reporter gene assays. Anal Biochem. 1994;219:169-181. https://doi.org/10.1006/abio.1994.1254
  6. Bronstein I, Martin CS, Fortin JJ, et al. Chemiluminescence: sensitive detection technology for reporter gene assays. Clin Chem. 1996;42:1542-1546.
  7. Matsumura I, Wallingford JB, Surana NK, et al. Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat Biotechnol. 1999;17:696-701. https://doi.org/10.1038/10910
  8. March JC, Rao G, Bentley WE. Biotechnological applications of green fluorescent protein. Appl Microbiol Biotechnol. 2003;62:303-315. https://doi.org/10.1007/s00253-003-1339-y
  9. Fakhoury AM, Payne GA. Genomics of filamentous fungi: a general review. In: Arora DK, editor. Handbook of fungal biotechnology. New York: Marcel Dekker; 2004. p. 115.
  10. Koo J, Kim Y, Kim J, et al. A GUS/luciferase fusion reporter for plant gene trapping and for assay of promoter activity with luciferin-dependent control of the reporter protein stability. Plant Cell Physiol. 2007;48:1121-1131. https://doi.org/10.1093/pcp/pcm081
  11. Ding J, Wang C, Li PC, et al. Dual-reporter imaging and its potential application in tracking studies. J Fluoresc. 2016;26:75-80. https://doi.org/10.1007/s10895-015-1673-3
  12. Lorang JM, Tuori RP, Martinez JP, et al. Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol. 2001;67:1987-1994. https://doi.org/10.1128/AEM.67.5.1987-1994.2001
  13. Janatova I, Costaglioli P, Wesche J, et al. Development of a reporter system for the yeast Schwanniomyces occidentalis: influence of DNA composition and codon usage. Yeast. 2003;20:687-701. https://doi.org/10.1002/yea.997
  14. de Graaff LH. Van den Broeck HC, Van Ooijen AJJ, et al. Structure and regulation of an Aspergillus xylanase gene. In: Visser J, Beldman G, Someren MAK, Voragen AGJ, editors. Xylan and xylanases, Progress in biotechnology. Amsterdam: Elsevier; 1992. p. 235-246.
  15. Cartwright CP, Li Y, Zhu YS, et al. Use of beta-lactamase as a secreted reporter of promoter function in yeast. Yeast. 1994;10:497-508. https://doi.org/10.1002/yea.320100409
  16. Mander GJ, Wang H, Bodie E, et al. Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl Environ Microbiol. 2006;72:5020-5026. https://doi.org/10.1128/AEM.00060-06
  17. Morgan LW, Greene AV, Bell-Pedersen D. Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol. 2003;38:327-332. https://doi.org/10.1016/S1087-1845(02)00562-5
  18. Elliott CE, Howlett BJ. Approaches for identification of fungal genes essential for plant disease. In: Setlow JK, editor. Genetic engineering: principles and methods. New York: Springer; 2004. p. 89-92.
  19. Hodgkins M, Mead D, Ballance DJ, et al. Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast. 1993;9:625-635. https://doi.org/10.1002/yea.320090609
  20. Walsh CT, Gehring AM, Weinreb PH, et al. Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol. 1997;1:309-315. https://doi.org/10.1016/S1367-5931(97)80067-1
  21. Marquez-Fernandez O, Trigos A, Ramos-Balderas JL, et al. Phosphopantheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. Eukaryot Cell. 2007;6:710-720. https://doi.org/10.1128/EC.00362-06
  22. He Y, Wang B, Chen W, et al. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv. 2018;36:739-783. https://doi.org/10.1016/j.biotechadv.2018.02.001
  23. Bitok JK, Lemetre C, Ternei MA, et al. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. FEMS Microbiol Lett. 2017;364:fnx155:1-8.
  24. Kim JM, Song HY, Choi HJ, et al. Characterization of NpgA, a 40 -phosphopantetheinyl transferase of Aspergillus nidulans, and evidence of its involvement in fungal growth and formation of conidia and cleistothecia for development. J Microbiol. 2015;53:21-31. https://doi.org/10.1007/s12275-015-4657-8
  25. Chung YS, Chae KS, Han DM, et al. Chemical composition and structure of hyphal wall of the null-pigment mutant of Aspergillus nidulans. Mol Cell. 1996;6:731-736.
  26. Chung YS, Kim JM, Han DM, et al. Ultrastructure of the cell wall of a null pigmentation mutant, npgA1, in Aspergillus nidulans. J Microbiol. 2003;41:224-231.
  27. Han DM, Han YJ. Effect of npgA1 mutation on the development of Aspergillus nidulans with velA+ or velA1 allele. Korean J Genet. 1994;16:323-332.
  28. Pontecorvo G, Roper JA, Hemmons LM, et al. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141-238.
  29. Kafer E. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet. 1997;19:133-131.
  30. Mackintosh EM, Pritchard RH. The production and replica plating micro-colonies of Aspergillus nidulans. Genet Res. 1963;4:320-322. https://doi.org/10.1017/S0016672300003670
  31. Ge L, Rudolph P. Simultaneous introduction of multiple mutations using overlap extension PCR. Biotechniques. 1997;22:28-30. https://doi.org/10.2144/97221bm03
  32. Timberlake WE. Molecular genetics of Aspergillus development. Annu Rev Genet. 1990;24:5-36. https://doi.org/10.1146/annurev.ge.24.120190.000253
  33. Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep. 2018;8:8983. https://doi.org/10.1038/s41598-018-27318-z
  34. Semighini CP, Marins M, Goldman MH, et al. Quantitative analysis of the relative transcript levels of ABC transporter Atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol. 2002;68:1351-1357. https://doi.org/10.1128/AEM.68.3.1351-1357.2002
  35. Muller M, Auslander S, Auslander D, et al. A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine. Metab Eng. 2012;14:325-335. https://doi.org/10.1016/j.ymben.2012.04.002
  36. Mullaney EJ, Hamer JE, Roberti KA, et al. Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet. 1985;199:37-45. https://doi.org/10.1007/BF00327506
  37. Zhang L, Villalon D, Sun Y, et al. Virus-associated down-regulation of the gene encoding cryparin, an abundant cell-surface protein from the chestnut blight fungus, Cryphonectria parasitica. Gene. 1994;139:59-64. https://doi.org/10.1016/0378-1119(94)90523-1
  38. Hamer JE, Timberlake WE. Functional organization of the Aspergillus nidulans trpC promoter. Mol Cell Biol. 1987;7:2352-2359. https://doi.org/10.1128/MCB.7.7.2352
  39. Kim MJ, Kwon BR, Park SM, et al. Promoter analysis of the cell surface-abundant and hypoviral-regulated cryparin gene from Cryphonectria parasitica. Mol Cells. 2008;26:496-502.
  40. Mootz HD, Schorgendorfer K, Marahiel MA. Functional characterization of 40-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae lys5 . FEMS Microbiol Lett. 2002;213:51-57.
  41. Gao L, Cai M, Shen W, et al. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production. Microb Cell Fact. 2013;12:1-14. https://doi.org/10.1186/1475-2859-12-1
  42. van Dijk JW, Wang CC. Heterologous expression of fungal secondary metabolite pathways in the Aspergillus nidulans host system. In: O'Connor SE, editor. In methods enzymology. Amsterdam: Elsevier; 2016. p. 127-142.
  43. Lubertozzi D, Keasling JD. Marker and promoter effects on heterologous expression in Aspergillus nidulans. Appl Microbiol Biotechnol. 2006;72:1014-1023. https://doi.org/10.1007/s00253-006-0368-8
  44. Han YJ, Han DM. Isolation and characterization of null pigment mutant in Aspergillus nidulans. Korean J Genet. 1993;15:1-10.

Cited by

  1. Strategies for gene disruption and expression in filamentous fungi vol.103, pp.15, 2018, https://doi.org/10.1007/s00253-019-09953-2