DOI QR코드

DOI QR Code

Development of Polymorphic Simple Sequence Repeat Markers using High-Throughput Sequencing in Button Mushroom (Agaricus bisporus)

  • Lee, Hwa-Yong (Department of Forest Science, Chungbuk National University) ;
  • Raveendar, Sebastin (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA) ;
  • An, Hyejin (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Kab-Yeul (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kong, Won-Sik (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University) ;
  • So, Yoon-Sup (Department of Crop Science, Chungbuk National University) ;
  • Chung, Jong-Wook (Department of Industrial Plant Science and Technology, Chungbuk National University)
  • Received : 2018.05.25
  • Accepted : 2018.08.14
  • Published : 2018.12.31

Abstract

The white button mushroom (Agaricus bisporus) is one of the most widely cultivated species of edible mushroom. Despite its economic importance, relatively little is known about the genetic diversity of this species. Illumina paired-end sequencing produced 43,871,558 clean reads and 69,174 contigs were generated from five offspring. These contigs were subsequently assembled into 57,594 unigenes. The unigenes were annotated with reference genome in which 6,559 unigenes were associated with clusters, indicating orthologous genes. Gene ontology classification assigned many unigenes. Based on genome data of the five offspring, 44 polymorphic simple sequence repeat (SSR) markers were developed. The major allele frequency ranged from 0.42 to 0.92. The number of genotypes and the number of alleles ranged from 1 to 4, and from 2 to 4, respectively. The observed heterozygosity and the expected heterozygosity ranged from 0.00 to 1.00, and from 0.15 to 0.64, respectively. The polymorphic information content value ranged from 0.14 to 0.57. The genetic distances and UPGMA clustering discriminated offspring strains. The SSR markers developed in this study can be applied in polymorphism analyses of button mushroom and for cultivar discrimination.

Keywords

References

  1. Imbach EJ. Mushroom of the canton of Lucerne and neighboring central Switzerland. Mitt Naturforsch Ges Luzern. 1946;15:1-85.
  2. Morin E, Kohler A, Baker AR, et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A. 2012;109:17501-17506. https://doi.org/10.1073/pnas.1206847109
  3. Liu J, Jia L, Kan J, et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310-316. https://doi.org/10.1016/j.fct.2012.10.014
  4. Foulongne-Oriol M, Spataro C, Savoie JM. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol. 2009;84:1125-1135. https://doi.org/10.1007/s00253-009-2030-8
  5. McGee CF. Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl Microbiol Biotechnol. 2018;102:1075-1083. https://doi.org/10.1007/s00253-017-8683-9
  6. Savoie J-M, Mata G. Growing Agaricus bisporus as a contribution to sustainable agricultural development. In: Petre M, editor. Mushroom Biotechnology. San Diego: Academic Press; 2016. p. 69-91.
  7. Royse DJ. A global perspective on the high five: Agaricus, Pleurotus, Lentinula, Auricularia & Flammulina. In: Singh M, editor. Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products; 2014 Nov 19-22; New Delhi: ICAR; 2014. p. 1-6.
  8. Kabel MA, Jurak E, Makela MR, et al. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol. 2017;101:4363-4369. https://doi.org/10.1007/s00253-017-8294-5
  9. Sonnenberg ASM, Baars JJP, Hendrickx PM, et al. Breeding and strain protection in the button mushroom Agaricus bisporus. In: Savoie JM, Foulongne-Oriol M, Largeteau M et al. editors. Proceedings of the 7th International Conference of the World Society for Mushroom Biology and Mushroom Products; 2011 Oct 04-07; Arcachon: INRA; 2011. p. 7-15.
  10. Raper CA, Raper JR, Miller RE. Genetic analysis of the life cycle of Agaricus bisporus. Mycologia. 1972;64:1088-1117. https://doi.org/10.1080/00275514.1972.12019354
  11. Gao W, Weijn A, Baars JJ, et al. Quantitative trait locus mapping for bruising sensitivity and cap color of Agaricus bisporus (button mushrooms). Fungal Genet Biol. 2015;77:69-81. https://doi.org/10.1016/j.fgb.2015.04.003
  12. Savoie J-M, Foulongne-Oriol M, Barroso G, et al. Genetics and genomics of cultivated mushrooms, application to breeding of agarics. In: Kempken F, editor. Agricultural Applications. Berlin: Springer-Verlag Berlin Heidelberg; 2013. p. 3-33.
  13. Sonnenberg ASM, Baars JJP, Kerrigan RW. Mushroom breeding: hurdles and challenges. In: Lelly JI, Buswell JA, editors. Proceeding of the 6th International Conference of the World Society for Mushroom Biology and Mushroom Products; 2008 Sep 29-Oct 3; Bonn: GAMU; 2008. p. 96-103.
  14. Min KJ, Kim JK, Kwak AM, et al. Genetic diversity of Agaricus bisporus strains by PCR polymorphism. Korean J Mycol. 2014;42:1-8. Korean. https://doi.org/10.4489/KJM.2014.42.1.1
  15. Hong WJ, Khaing AA, Park YJ. Cultivar identification of Chrysanthemum (Dendranthema grandiflorum. Ramat.) using SSR markers. Korean J Intl Agri. 2013;25:385-394. Korean. https://doi.org/10.12719/KSIA.2013.25.4.385
  16. Paisey EC, Abbas B. Morphological characteristics and nutritional values of wild types of sago mushrooms (Volvariella sp.) that growth naturally in Manokwari, West Papua. Natural Sci. 2015;7:559-604.
  17. Kauserud H, Heegaard E, Buntgen U, et al. Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci U S A. 2012;109:14488-14493. https://doi.org/10.1073/pnas.1200789109
  18. Menolli Junior N, Asai T, Capelari M, et al. Morphological and molecular identification of four Brazilian commercial isolates of Pleurotus spp. and cultivation on corncob. Braz Arch Biol Technol. 2010;53:397-408. https://doi.org/10.1590/S1516-89132010000200019
  19. Khush RS, Becker E, Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Environ Microbiol. 1992;58:2971-2977.
  20. Iwao S, Masahiro T, Yoshiho N. Discrimination of mushrooms in genus Pleurotus by DNA restriction fragment length polymorphism. J Gen Appl Microbiol. 1992;38:597-603. https://doi.org/10.2323/jgam.38.597
  21. Mukhopadhyay K, Haque I, Bandopadhyay R, et al. AFLP based assessment of genetic relationships among shiitake (Lentinula ssp.) mushrooms. Mol Biol Rep. 2012;39:6059-6065. https://doi.org/10.1007/s11033-011-1420-z
  22. Kim K-H, Ka K-H, Kang JH, et al. Identification of single nucleotide polymorphism markers in the laccase gene of shiitake mushrooms (Lentinula edodes). Mycobiology. 2015;43:75-80. https://doi.org/10.5941/MYCO.2015.43.1.75
  23. Im CH, Kim KH, Je HJ, et al. Multiplex simple sequence repeat (SSR) markers discriminating Pleurotus eryngii cultivar. Korean J Mycol. 2014;42:159-164. Korean. https://doi.org/10.4489/KJM.2014.42.2.159
  24. Li YC, Korol AB, Fahima T, et al. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11:2453-2465. https://doi.org/10.1046/j.1365-294X.2002.01643.x
  25. Saha MC, Cooper JD, Mian MA, et al. Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet. 2006;113:1449-1458. https://doi.org/10.1007/s00122-006-0391-2
  26. Thiel T, Michalek W, Varshney R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106:411-422. https://doi.org/10.1007/s00122-002-1031-0
  27. Nam YK. Genetic polymorphism and morphological traits of collected Agaricus bisporus strains [master's thesis]. Cheongju: Chungbuk National University; 2018.
  28. Kajitani R, Toshimoto K, Noguchi H, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:1384-1395. https://doi.org/10.1101/gr.170720.113
  29. Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, et al. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494-6506. https://doi.org/10.1093/nar/gki937
  30. Gotz S, Garcia-Gomez JM, Terol J, et al. Highthroughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420-3435. https://doi.org/10.1093/nar/gkn176
  31. Fritsche G. Breeding mushrooms. Mushroom J. 1986;157:4-17.
  32. Kerrigan RW, Royer JC, Baller LM, et al. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics. 1993;133:225-236.
  33. Stajich JE, Wilke SK, Ahren D, et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A. 2010;107:11889-11894. https://doi.org/10.1073/pnas.1003391107
  34. Lu T, Bau T. De novo assembly and characterization of the transcriptome of a wild edible mushroom Leucocalocybe mongolica and identification of SSR markers. Biotechnol Biotechnological Equip. 2017;31:1148-1159. https://doi.org/10.1080/13102818.2017.1383187
  35. Cavagnaro PF, Senalik DA, Yang L, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11:569. https://doi.org/10.1186/1471-2164-11-569
  36. Wang Q, Fang L, Chen J, et al. Genome-wide mining, characterization, and development of microsatellite markers in gossypium species. Sci Rep. 2015;5:10638. https://doi.org/10.1038/srep10638
  37. Lee H-Y, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8:109. https://doi.org/10.3390/genes8040109
  38. Wang M, Li RZ, Yang WM, et al. Assessing the genetic diversity of cultivars and wild soybeans using SSR markers. Afr J Biotechnol. 2010;9:4857-4866.
  39. Ram SG, Thiruvengadam V, Vinod KK. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J Appl Genet. 2007;48:337-345. https://doi.org/10.1007/BF03195230
  40. Liu XB, Li J, Yang ZL. Genetic diversity and structure of core collection of winter mushroom (Flammulina velutipes) developed by genomic SSR markers. Hereditas. 2018;155:3. https://doi.org/10.1186/s41065-017-0038-0
  41. Rokni N, Goltapeh EM, Shafeinia A, et al. Evaluation of genetic diversity among some commercial cultivars and Iranian wild strains of Agaricus bisporus by microsatellite markers. Botany. 2016;94:9-13. https://doi.org/10.1139/cjb-2015-0131

Cited by

  1. 한국의 상업적 양송이 균주의 유전적 다양성 및 집단 구조 vol.17, pp.4, 2018, https://doi.org/10.14480/jm.2019.17.4.171
  2. Molecular Characterization of 170 New gDNA-SSR Markers for Genetic Diversity in Button Mushroom (Agaricus bisporus) vol.47, pp.4, 2018, https://doi.org/10.1080/12298093.2019.1667131
  3. Development of CAPS Markers for Evaluation of Genetic Diversity and Population Structure in the Germplasm of Button Mushroom (Agaricus bisporus) vol.7, pp.5, 2018, https://doi.org/10.3390/jof7050375
  4. Evaluation of Genetic Diversity and Population Structure Analysis among Germplasm of Agaricus bisporus by SSR Markers vol.49, pp.4, 2018, https://doi.org/10.1080/12298093.2021.1940746