DOI QR코드

DOI QR Code

영산강수계 의료기원 방사성요오드(131I) 핵종의 분포 및 거동평가

The Distribution and Behavior of Medically-derived 131I in the Yeongsan River Basin

  • 강태우 (국립환경과학원 영산강물환경연구소) ;
  • 한영운 (국립환경과학원 영산강물환경연구소) ;
  • 박원표 (제주대학교 생물산업학부 식물자원환경전공) ;
  • 송광덕 (국립환경과학원 영산강물환경연구소) ;
  • 황순홍 (국립환경과학원 영산강물환경연구소) ;
  • 강태구 (국립환경과학원 물환경평가연구과) ;
  • 김경현 (국립환경과학원 영산강물환경연구소)
  • Kang, Tae-Woo (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Han, Young-Un (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Park, Won-Pyo (Faculty of Bioscience and Industry, Jeju National University) ;
  • Song, Kwang-Duck (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Hwang, Soon-Hong (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Kang, Tae Gu (Water Quality Assessment Research Division, National Institute of Environmental Research) ;
  • Kim, Kyung Hyun (Yeongsan River Environment Research Center, National Institute of Environmental Research)
  • 투고 : 2018.08.23
  • 심사 : 2018.10.17
  • 발행 : 2018.12.31

초록

본 연구는 영산강 수계에 위치한 하수처리장 및 하천 중 인공방사성핵종 $^{131}I$의 농도 분포와 하천에서 거동 평가로부터 기원을 확인하고자 수행하였다. 조사지점은 하천 중 본류 13개 및 지류 4개 지점과 하수처리장 2개 지점을 포함하여 총 19개 지점을 선정하였다. $^{131}I$ 방사능 분석은 고순도 게르마늄 검출기와 다중파고분석기로 구성된 감마분광계를 이용하여 계측하였다. 하수처리장 중 $^{131}I$ 핵종은 두 지점의 방류수에서 대부분 검출되었으나, 하천의 표층수는 2017년 상반기(MS4, MS10) 및 하반기(MS4, MS7)에만 각각 두 지점에서 검출되었다. 하수처리장 방류수 중 $^{131}I$ 농도는 각각 0.0870~3.87 Bq/L 및 MDC 이하~0.534 Bq/L, 검출된 하천 표층수는 0.0908~0.174 Bq/L 범위였다. 하천에서 $^{131}I$ 거동 평가 결과, 본류 중에서 가장 상류와 지류의 하천 지점들에서는 검출되지 않았고, 반면 하수처리장과 이들의 영향을 받는 하류의 하천 지점들에서는 지속적으로 검출되었다. 하지만 하류 하천으로 갈수록 감소하다가 불검출 되어 하수처리장과 밀접한 관계가 있었다. 이상의 결과, 하천에서 검출되는 $^{131}I$ 핵종은 하수처리장에서 유래된 것으로 의료 기원임을 확인할 수 있었다.

BACKGROUND: Recently, the use of $^{131}I$ for diagnosis and treatment of thyroid cancer has been increasing, and the radionuclide is continuously released into aquatic ecosystem. This study was carried out to investigate the $^{131}I$ concentrations in mainstreams, tributaries, and sewage wastewater treatment plants (SWTPs) of the Yeongsan River Basin and to identify their origins from the assessment of behaviors in the rivers. METHODS AND RESULTS: The water samples were collected from 19 sites including mainstreams (13), tributaries (4) and SWTPs (2). The $^{131}I$ concentration was measured using a gamma-ray spectrometry with a HPGe detector. The $^{131}I$ in SWTPs was detected mostly in the discharged effluent at the sampling sites. However, from the surface water of the rivers, $^{131}I$ was found only at two sites from each sampling period of the first (MS4 and MS10) and the second half (MS4 and MS7) of the year 2017. The concentrations of $^{131}I$ in the effluent discharged from SWTPs were in the range of 0.0870 to 3.87 Bq/L for SWTP1, and $^{131}I$ in the river revealed that it was not detected in the upper streams of the mainstreams and tributaries, while continuous detection was found in the SWTPs and downstream sites affected by the effluent. However, the concentration of $^{131}I$ decreased downstream, eventually becoming undetectable. Such behavior was closely related to the behavior found in the SWTPs. CONCLUSION: These results indicated that medically-derived $^{131}I$ was discharged to the river via sewage effluent at the SWTPs. It is necessary to evaluate the influence of aquatic ecosystems through continuous monitoring in the future.

키워드

참고문헌

  1. Carolan, J. V., Hughes, C. E., & Hoffmann, E. L. (2011). Dose assessment for marine biota and humans from discharge of 131I to the marine environment and uptake by algae in Sydney, Australia. Journal of Environmental Radioactivity, 102(10), 953-963. https://doi.org/10.1016/j.jenvrad.2009.10.002
  2. Chang, B. U., Choi, S. W., Song, M. H., Lee, J. S., & Kim, Y. (2011). Medically used radionuclides ($^{131}I,\;^{99m}Tc$) in the urban sewage system: the case of the Daejeon metropolitan city, Korea. Radiation Protection Dosimetry, 146(1-3), 318-321. https://doi.org/10.1093/rpd/ncr108
  3. Cho, Y. H., Seol, B. N., Kim, W. S., Min, K. O., Lee, J. B., & Lee, S. H. (2016). A case study about counting uncertainty of radioactive iodine ($^{131}I$) in public waters by using gamma spectrometry. Journal of Korean Society of Environmental Engineers, 38(1), 42-46. https://doi.org/10.4491/KSEE.2016.38.1.42
  4. Erlandsson, B., Bjurman, B., & Mattsson, S. (1989). Calculation of radionuclide ground deposition by means of measurements on sewage sludge. Water, Air, and Soil Pollution, 45(3-4), 329-344. https://doi.org/10.1007/BF00283462
  5. Fischer, H. W., Ulbrich, S., Pittauerova, D., & Hettwig, B. (2009). Medical radioisotopes in the environment-following the pathway from patient to river sediment. Journal of Environmental Radioactivity, 100(12), 1079-1085. https://doi.org/10.1016/j.jenvrad.2009.05.002
  6. Howe, J. R., & Hunt, A. E. (1984). Swan thyroid glands and river algae as indicators of iodine-125 and iodine-131 in the River Trent and its tributaries. Science of the Total Environment, 35(3), 387-401. https://doi.org/10.1016/0048-9697(84)90012-3
  7. Howe, J. R., & Lloyd, M. K. (1986). Radio-iodine in thyroid glands of swans, farm animals and humans, also in algae and river water from the Thames Valley, England. Science of the Total Environment, 48(1-2), 13-31. https://doi.org/10.1016/0048-9697(86)90151-8
  8. Jimenez, F., Deban, L., Pardo, R., Lopez, R., & Garcia-Talavera, M. (2011). Levels of $^{131}I$ and six natural radionuclides in sludge from the sewage treatment plant of Valladolid, Spain. Water, Air, and Soil Pollution, 217(1-4), 515-521. https://doi.org/10.1007/s11270-010-0605-8
  9. Kim, J. Y., Jung, H. J., An, M. J., Hong, J. K., Kang, T. G., Kang, T. W., Cho, Y. H., Han, Y. U., Seol, B. N., Kim, W. S., & Kim, K. H. (2015). Status of national monitoring program for environmental radioactivity and investigation of artificial radionuclide concentrations ($^{134}Cs$, $^{137}Cs$ and $^{131}I$) in rivers and lakes. Analytical Science & Technology, 28(6), 377-384. https://doi.org/10.5806/AST.2015.28.6.377
  10. Kleinschmidt, R. (2009). Uptake and depuration of $^{131}I$ by the macroalgae Catenella nipae-Potential use as an environmental monitor for radiopharmaceutical waste. Marine Pollution Bulletin, 58(10), 1539-1543. https://doi.org/10.1016/j.marpolbul.2009.05.011
  11. Malta, M., Oliverira, J. M., Silva L., & Carvalho, F. P. (2013). Radioactivity from Lisboa urban wastewater discharges in the Tejo River Estuary. Journal of Integrated Coastal Zone Management, 13(4), 399-408.
  12. Martin, J. E., & Fenner, F. D. (1997). Radioactivity in municipal sewage and sludge. Public Health Reports, 112(4), 308-318.
  13. Montenero, M. P., Dilbone, E. K., & Waples, J. T. (2017). Using medically-derived iodine-131 to track sewage effluent in the Laurentian Great Lakes. Water Research, 123, 773-782. https://doi.org/10.1016/j.watres.2017.07.022
  14. Moran, J. E., Oktay, S. D., & Santschi, P. H. (2002). Sources of iodine and iodine 129 in rivers. Water Resources Research. 38(8), 1149-1158.
  15. Morita, T., Niwa, K., Fujimoto, K., Kasai, H., Yamada, H., Nishiutch, K., Sakamoto, T., Godo, W., Taino, S., Hayashi, Y., Takeno, K., Nishigaki, T., Fujiwara, K., Aratake, H., Kamonoshita, S., Hashimoto, H., Kobayashi, T., Otosaka, S., & Imanaka, T. (2010). Detection and activity of iodine-131 in brown algae collected in the japanese coastal areas. Science of the Total Environment, 408(16), 3443-3447. https://doi.org/10.1016/j.scitotenv.2010.04.001
  16. Moss, C. E. (1973). Control of radioisotope releases to environment from diagnostic isotope procedures. Health Physics, 25, 197-198.
  17. Pritchard, H. M., Gessel, T. F., & David, E. (1981). Iodine-131 levels in sludge and treated municipal wastewaters near a large medical complex. American Journal of Public Health, 71(1), 47-52. https://doi.org/10.2105/AJPH.71.1.47
  18. Puhakainen, M. (1998). Detection of radionuclides in sewage water and sludge. Radiochemistry, 40(6), 529-533.
  19. Punt, A., Wood, M., & Rose, D. (2007). Radionuclide discharges to sewer-a field investigation. Science Report SC020150, Environmental Agency UK.
  20. Rose, P. S., Smith, J. P., Cochran, J. K., Aller, R. C., & Swanson, R. L. (2013). Behavior of medically-derived $^{131}I$ in the tidal Potomac River. Science of the Total Environment, 452-453, 87-97. https://doi.org/10.1016/j.scitotenv.2013.01.055
  21. Rose, P. S., Swanson, R. L., & Cochran, J. K. (2012). Medically-derived $^{131}I$ in municipal sewage effluent. Water Research, 46(17), 5663-5671. https://doi.org/10.1016/j.watres.2012.07.045
  22. Ruchhoft, C. C., & Feitelberg, S. (1951). Estimates on concentration of radio-iodine in sewage and sludge from hospital wastes. Nucleonics, 9(6), 29-34.
  23. Smith, J. P., Oktay, S. D., Kada, J., & Olsen, C. R. (2008). Iodine-131: a potential short-lived, wastewater-specific particle tracer in an urbanized estuarine system. Environmental Science & Technology, 42(15), 5435-5440. https://doi.org/10.1021/es800418c
  24. Sodd, V. J., Velten, R. J., & Saenger, E. L. (1975). Concentrations of the medically useful radionuclides, technetium-99m and iodine-131 at a large metropolitan waste water treatment plant. Health Physics, 28(4), 355-359. https://doi.org/10.1097/00004032-197504000-00005
  25. Waller, E. J., & Cole, D. (1999). An environmental radionuclide baseline study near three Canadian naval ports. Health physics, 77(1), 37-42. https://doi.org/10.1097/00004032-199907000-00008
  26. Warsh, K., Buddemeier, R., Wood, W., & Smith, C. (1988). Radioiodine in kelp from western Australia. Journal of Radioanalytical and Nuclear Chemistry, 123(1), 199-213. https://doi.org/10.1007/BF02036391