DOI QR코드

DOI QR Code

Site Competition of Ca2+ and Cs+ Ions in the Framework of Zeolite Y (Si/Al = 1.56) and Their Crystallographic Studies

제올라이트 Y (Si/Al = 1.56) 골격 내의 Ca2+과 Cs+ 이온의 자리 경쟁 및 그들의 결정학적 연구

  • Kim, Hu Sik (Department of Applied Chemistry, Andong National University) ;
  • Park, Jong Sam (Department of Radiologic Technology, Daegu Health College) ;
  • Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
  • Received : 2018.10.23
  • Accepted : 2018.11.20
  • Published : 2018.12.31

Abstract

The present work was performed in order to study the effect of competing cation of $Ca^{2+}$ ion on ion exchange of $Cs^+$ on zeolite Y (Si/Al = 1.56). Three single-crystals of fully dehydrated and partially $Cs^+$-exchanged zeolites Y (Si/Al = 1.56) were prepared by the flow method using mixed ion-exchange solutions. The $CsNO_3:Ca(NO_3)_2$ molar ratios of the ion exchange solution were 1 : 1 (crystal 1), 1 : 100 (crystal 2), and 1 : 250 (crystal 3) with a total concentration of 0.05 M. The single-crystals were then vacuum dehydrated at 723 K and $1{\times}10^{-4}Pa$ for 2 days. The structures of the crystals were determined by single-crystal synchrotron X-ray diffraction technique in the cubic space group $Fd{\bar{3}}m$, at 100(1) K. The unit-cell formulas of crystals 1, 2, and 3 were ${\mid}Cs_{21}Ca_{27}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, ${\mid}Cs_2Ca_{36.5}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, and ${\mid}Cs_1Ca_{37}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, respectively. In all three crystals, the $Ca^{2+}$ ions preferred to occupy site I in the D6Rs, with the remainder occupying sites I', II', and II. On the other hand, the significant differences in the fractional distribution of $Cs^+$ ions are observed depending on the intial $Cs^+$ concentrations in given ion exchange solution. In Crystal 1, $Cs^+$ ion are located at sites II', II, III, and III', and in crystal 2, at sites II, IIIa, and IIIb. In crystal 3, $Cs^+$ ions are only located at sites IIIa and IIIb. The degree of $Cs^+$ ion exchange decreased sharply from 28.0 to 2.7 to 1.3 % as the initial $Ca^{2+}$ concentration increases and the $Cs^+$ content decreases.

본 연구는 제올라이트 Y (Si/Al = 1.56)에서 $Cs^+$ 이온 교환에 $Ca^{2+}$ 이온의 경쟁 양이온 효과를 연구하기 위해 수행되었다. 완전히 탈수되고 부분적으로 $Cs^+$ 이온으로 교환된 3개의 제올라이트 Y(Si/Al = 1.56)의 단결정은 혼합이온교환 용액을 사용하여 흐름법으로 제조되었으며, 전체 농도가 0.05 M인 이온교환용액의 $CsNO_3:Ca(NO_3)_2$ 몰비는 1 : 1 (Crystal 1), 1 : 100 (Crystal 2) 및 1 : 250 (Crystal 3)이다. 이온교환된 단결정을 723 K에서 2일 동안 $1{\times}10^{-4}Pa$로 진공 탈수시켰으며, 결정구조는 100(1) K에서 입방공간군 $Fd{\bar{3}}m$을 사용하여 단결정 싱크트론 X선 회절법으로 해석하고 구조를 정밀화하였다. Crystal 1, 2 및 3의 단위세포당 화학식은 ${\mid}Cs_{21}Ca_{27}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$, ${\mid}Cs_2Ca_{36.5}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$${\mid}Cs_1Ca_{37}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$이다. 3개의 결정 모두에서, $Ca^{2+}$ 이온은 D6Rs 내의 site I을 우선적으로 점유하고 있으며 나머지는 site I', II' 및 II를 점유하고 있다. 한편 주어진 이온교환용액의 초기 $Cs^+$ 이온의 농도에 따라 $Cs^+$ 이온의 분포에 중요한 차이가 관찰되었다. Crystal 1에서는 $Cs^+$ 이온이 site II', II, III와 III'에 위치하고 있으며, Crystal 2에서는 site II, IIIa, IIIb에 위치하고 있다. Crystal 3에서는 $Cs^+$ 이온은 site IIIa 및 IIIb에만 위치하고 있다. 초기 $Ca^{2+}$ 이온의 농도가 증가하고 $Cs^+$ 이온의 농도가 감소에 따라 $Cs^+$ 이온의 교환정도는 28.0에서 2.7과 1.3 %로 급격히 감소하였다.

Keywords

References

  1. Abusafa, A. and Yucel, H. (2002) Removal of $^{137}Cs$ from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite. Separation and Purification Technology, 28, 103-116. https://doi.org/10.1016/S1383-5866(02)00042-4
  2. Bae, M.N. (2007) Crystal structure of fully dehydrated partially $Cs^+$--exchanged zeolite X, $Cs_{52}Na_{40}$-X(The highest $Cs^+$--exchanged level achieved by conventional method and confirmation of special site selectivity). Bulletin of the Korean Chemical Society, 28, 251-256. https://doi.org/10.5012/bkcs.2007.28.2.251
  3. Bekkum, H.V., Flanigen, E.M., Jacobs, P.A., and Jansen, J.C. (2001) Introductions to Zeolite Science and Practice. Elsevier. 44p.
  4. Breck, D.W. (1974) Zeolite Molecular Sieves. John Wiley & Sons, New York, 93-103.
  5. Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination. Bruker AXS Inc., Madison, WI (2001).
  6. Cromer, D.T. (1965) Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions. Acta Crystallographica, 18, 17-23. https://doi.org/10.1107/S0365110X6500004X
  7. Datta, S.J., Moon, W.K., Choi, D.Y., Hwang, I.C., and Yoon, K.B. (2014) A Novel Vanadosilicate with Hexadeca-Coordinated $Cs^+$ Ions as a Highly Effective $Cs^+$ Remover. Angewandte Chemie International Edition, 53, 1-7. https://doi.org/10.1002/anie.201310509
  8. Doyle, P.A. and Turner, P.S. (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallographica A, 24, 390-397. https://doi.org/10.1107/S0567739468000756
  9. El-Kamash, A.M. (2008) Evaluation of zeolite A for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151, 432-445. https://doi.org/10.1016/j.jhazmat.2007.06.009
  10. El-Naggar, M.R., El-Kamash, A.M., EI-Dessouky, M.I., and Ghonaim, A.K. (2008) Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. Journal of Hazardous Materials, 154, 963-972. https://doi.org/10.1016/j.jhazmat.2007.10.115
  11. Howery, D.G. and Thomas, H.C. (1965) Ion exchange on the mineral clinoptilolite. The Journal of Physical Chemistry, 69, 531-537. https://doi.org/10.1021/j100886a029
  12. Ibers, J.A. and Hamilton, W.C. (1974a), International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 71-98.
  13. Ibers, J.A. and Hamilton, W.C. (1974b), International Tables for X-ray Crystallography, Kynoch Press, Birmingham, IV, 148-150.
  14. Jang, S.B., Song, S.H., and Kim, Y. (1996) Crystal structures of full dehydrated $Ca_{29}Cs_{22}Si_{100}Al_{92}O_{384}$ and $Ca_{29}Cs_{34}Si_{100}Al_{92}O_{384}$. Journal of the Korean Chemical Society, 40, 427-435.
  15. Kim, H.S., Choi, S.J., and Lim, W.T. (2017a) Behavior of cesium cation in zeolite Y (FAU, Si/Al = 1.56) and their single-crystal structures, $\left|Cs_{75-x}Na_x\right|$ [$Si_{117}Al_{75}O_{384}$]-FAU (x = 35 and 54). Journal of Porous Materials, 24, 55-64. https://doi.org/10.1007/s10934-016-0237-5
  16. Kim, H.S, Chung, D.Y., and Lim, W.T. (2014) Single-crystal structures of $Sr^{2+}$ and $Cs^+$-exchanged zeolites X and Y, $\left|Sr_{40}Cs_{12}\right|$[$Si_{100}Al_{92}O_{384}$]-FAU and $\left|Sr_{29}Cs_{17}\right|$[$Si_{117}Al_{75}O_{384}$]-FAU. Journal of Chemical Crystallography, 44, 269-278. https://doi.org/10.1007/s10870-014-0511-9
  17. Kim, H.S., Kim, Y.H., and Lim, W.T. (2017b) Crystallographic studies on the site selectivity of $Ca^{2+}$, $K^+$, and $Rb^+$ ions within zeolite Y (Si/Al = 1.56). Journal of Porous Materials, 24, 959-972. https://doi.org/10.1007/s10934-016-0335-4
  18. Kotvitskyy, A.G., Maltseva, T.V., and Belyakov, V.N. (2005) Selective removal of $Cs^+$ ions by means of electro-deionisation. Separation Purification Technology, 41, 329-334. https://doi.org/10.1016/j.seppur.2004.03.017
  19. Lee, H.Y., Kim, H.S., Jeong, H., Park, M., Chung, D., Lee, K., Lee, E., and Lim, W.T. (2017) Selective removal of radioactive cesium from nuclear waste by zeolites: On the origin of cesium selectivity revealed by systematic crystallographic studies. The Journal of Physical Chemistry C, 121, 10594-10608. https://doi.org/10.1021/acs.jpcc.7b02432
  20. Lim, W.T., Seo, S.M., Wang, L., Lu, G.Q., Heo, N.H., and Seff, K. (2010) Single-crystal structures of highly $NH_4{^+}$-exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Microporous and Mesoporous Materials, 129, 11-21. https://doi.org/10.1016/j.micromeso.2009.08.028
  21. Loewenstein, W. (1954) The distribution of a aluminium in the tetrahedral of silicates and aluminates. American Mineralogist, 39, 92-96.
  22. Ma, B., Oh, S., Shin, W.S., and Choi, S. (2011) Removal of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276, 336-346. https://doi.org/10.1016/j.desal.2011.03.072
  23. Mimura, H. and Kanno, T. (1984) Distribution and fixation of cesium and strontium in zeolite A and chabazite. Journal of Nuclear Science and Technology, 23, 284-291.
  24. Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution-from diffraction images to an initial model in minutes. Acta Crystallographica Sect D, 62, 859-866. https://doi.org/10.1107/S0907444906019949
  25. Nilchi, A., Saberi, R., Garmarodi, S.R., and Bagheri, A. (2012) Evaluation of PAN-based manganese dioxide composite for the sorptive removal of cesium-137 from aqueous solutions. Applied Radiation and Isotopes, 70, 369-374. https://doi.org/10.1016/j.apradiso.2011.10.018
  26. Ostroski, I.C., Dantas, J.H., Silva, E.A., Arroyo, P.A., Barros, and M.A.S.D. (2012) Competing ion exchange of $Zn^{2+}$ and $Fe^{3+}$ in NaY zeolite. Adsorption Science & Technology, 30, 275-291. https://doi.org/10.1260/0263-6174.30.4.275
  27. Parab, H. and Sudersanan, M. (2010) Engineering a lignocellulosic biosorbent-coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies. Water Research 44, 854-860. https://doi.org/10.1016/j.watres.2009.09.038
  28. Robert, C.W. (1989/1990) Handbook of Chemistry and Physics, 70th ed. The Chemical Rubber Co.: Cleveland, OH, F-187p.
  29. Ryu, K.S., Bae, M.N., Kim, Y., and Seff, K. (2004) Further crystallographic confirmation that $Cs^+$ ions can occupy sodalite cavities and double six-rings. Crystal structure of fully dehydrated partially $Cs^+$-exchanged zeolite X, $\left|Cs_{45}Na_{47}\right|$[$Si_{100}Al_{92}O_{384}$]-FAU. Microporous and Mesoporous Materials, 71, 65-75. https://doi.org/10.1016/j.micromeso.2004.01.006
  30. Seo, S.M., Kim, G.H., Lee, S.H., Bae, J.S., and Lim, W.T. (2009) Synthesis of fully dehydrated partially $Cs^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), $\left|Cs_{45}Na_{30}\right|$[$Si_{117}Al_{75}O_{384}$]-FAU and its single-crystal structure. Bulletin of Korean Chemical Society, 30, 1285-1292. https://doi.org/10.5012/bkcs.2009.30.6.1285
  31. Shakir, K., Sohsah, M., and Solinman, M. (2007) Removal of cesium from aqueous solution and radioactive waste simulants by coprecipitate flotation. Separation Purification Technology, 54, 373-381. https://doi.org/10.1016/j.seppur.2006.10.006
  32. Sheldrick, G.M. (1997) SHELXL97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany.
  33. Smiciklas, I., Dimivic, S., and Plecas. I. (2007) Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite. Applied Clay Science, 35, 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  34. Song, K., Lee, H.K., Moon, H., and Lee, K.J. (1997) Simultaneous removal of the radiotoxic nuclides $Cs^{137}$ and $I^{129}$ from aqueous solution. Separation and Purification Technology, 12, 215-227. https://doi.org/10.1016/S1383-5866(97)00045-2
  35. Valsala, T.P., Roy, S.C., Shah, J.G., Gabriel, J., Raj, K., and Venugopal, V. (2009) Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. Journal of Hazardous Materials, 166, 1148-1153. https://doi.org/10.1016/j.jhazmat.2008.12.019
  36. Willms, C., Li, Z., Allen, L., and Evans, C.V. (2004) Desorption of cesium from kaoline and illite using alkylammonium salts. Applied Clay Science, 25, 125-133. https://doi.org/10.1016/j.clay.2003.10.001
  37. Wu, J., Li, B., Liao, J., Feng, Y., Zhang, D., Zhao, J., Wen, W., Yang, Y., and Liu, N. (2009) Behavior and analysis of cesium adsorption on montmorillonite mineral. Journal of Environmental Radioactivity, 100, 914-920. https://doi.org/10.1016/j.jenvrad.2009.06.024

Cited by

  1. Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization vol.12, pp.16, 2018, https://doi.org/10.3390/ma12162638
  2. 제올라이트 및 활성 황토를 혼입한 모르타르의 역학적 특성 평가 vol.7, pp.4, 2018, https://doi.org/10.14190/jrcr.2019.7.4.405