DOI QR코드

DOI QR Code

A comparative study of different radiometric methodologies for the determination of 226Ra in water

  • Al-Hamarneh, Ibrahim F. (Department of Physics, Faculty of Science, Al-Balqa Applied University) ;
  • Almasoud, Fahad I. (Nuclear Science Research Institute, King Abdulaziz City for Science and Technology (KACST))
  • 투고 : 2017.08.19
  • 심사 : 2017.10.22
  • 발행 : 2018.02.25

초록

An evaluation of various radiometric methods to analyze $^{226}Ra$ in water has been employed on a set of 10 standard solutions of different concentrations in the range of $1-10Bq/L^{-1}$. The analysis was carried out using well-established procedures by means of gamma-ray, alpha-particle and liquid scintillation spectrometry. The feasibility of the various methods has been quantified in terms of relative standard error and percentage error. Correlations between the various methods have been presented and discussed. In general, good agreement was found in the results of various methodologies, which assures the accuracy of the methods and allows for the validation of instrumentation and procedures. Of the different methods adopted here, a combined procedure for the determination of $^{226}Ra$ along with $^{228}Ra$ using Quantulus 1220 ultra-low level background liquid scintillation counting gave the most accurate results.

키워드

참고문헌

  1. IAEA, Analytical methodology for the determination of radium isotopes in environmental samples, IAEA Analytical Quality in Nuclear Applications Series No. 19, IAEA, Vienna, 2010.
  2. Z. Szabo, V.T. dePaul, J.M. Fischer, T.F. Kraemer, E. Jacobsen, Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States, Appl. Geochem. 27 (2012) 729-752. https://doi.org/10.1016/j.apgeochem.2011.11.002
  3. I. Chmielewska, S. Chalupnik, M. Bonczyk, Natural radioactivity in drinking underground waters in Upper Silesia and solid wastes produced during treatment, Appl. Radiat. Isot. 93 (2014) 96-100. https://doi.org/10.1016/j.apradiso.2014.01.017
  4. UNSCEAR, Sources, effects and risks of ionizing radiation, Report to General Assembly with Scientific Annexes, United Nations, New York, 2016.
  5. US EPA, List of drinking water contaminants & MCLs, EPA, 2003 available from: http://www.epa.gov/safewater/mcl.html#mclsS.
  6. S. Chalupnik, J.M. Lebecka, Determination of $^{226}Ra$, $^{228}Ra$ and $^{224}Ra$ in water and aqueous solutions by liquid scintillation counting, in: J.E. Noakes, F. Schonhofer, H.A. Polach (Eds.), Liquid Scintillation Spectrometry 1992. Radiocarbon, 1993, pp. 397-403. Tucson, Arizona.
  7. S. Purkl, A. Eisenhauer, Determination of radium isotopes and $^{222}Rn$ in a groundwater affected coastal area of the Baltic Sea and the underlying sub-sea floor aquifer, Mar. Chem. 87 (2004) 137-149. https://doi.org/10.1016/j.marchem.2004.02.005
  8. N. Alkhomashi, I.F. Al-Hamarneh, F.I. Almasoud, Determination of natural radioactivity in irrigation water of drilled wells in northwestern Saudi Arabia, Chemosphere 144 (2016) 1928-1936. https://doi.org/10.1016/j.chemosphere.2015.10.094
  9. M. Inoue, K. Komura, Determination of radionuclides in chemical reagents by low-background ${\gamma}$-spectrometry and application of the coprecipitation method to seawater samples, Radioisotopes 56 (2007) 77-82. https://doi.org/10.3769/radioisotopes.56.77
  10. S. Rihs, M. Condomines, An improved method for Ra isotope ($^{226}Ra$, ($^{228}Ra$, ($^{224}Ra$) measurements by gamma spectrometry in natural water: application to $CO_2$-rich thermal waters from the French Massif Central, Chem. Geol. 182 (2002) 409-421. https://doi.org/10.1016/S0009-2541(01)00332-1
  11. G. Jia, J. Jia, Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology, J. Environ. Radioact. 106 (2012) 98-119. https://doi.org/10.1016/j.jenvrad.2011.12.003
  12. S.M. Al-Amir, I.F. Al-Hamarneh, T. Al-Abed, M. Awadallah, Natural radioactivity in tap water and associated age-dependent dose and lifetime risk assessment in Amman, Jordan, Appl. Radiat. Isot. 70 (2012) 692-698. https://doi.org/10.1016/j.apradiso.2011.12.002
  13. P.V. Beek, M. Souhaut, J.L. Reyss, Measuring the radium quartet (($^{228}Ra$, ($^{226}Ra$, ($^{224}Ra$, ($^{223}Ra$) in seawater samples using gamma spectrometry, J. Environ. Radioact 101 (7) (2010) 521-529. https://doi.org/10.1016/j.jenvrad.2009.12.002
  14. M. Villa, H.P. Moreno, G. Manjon, Determination of ($^{226}Ra$ and ($^{224}Ra$ in sediments samples by liquid scintillation counting, J. Radiat. Measur. 39 (2005) 543-550. https://doi.org/10.1016/j.radmeas.2004.10.004
  15. L.A. Curie, Limit for quantitative detection and quantitative determination: application to radiochemistry, Anal. Chem. 40 (1968) 586-591. https://doi.org/10.1021/ac60259a007
  16. H.M. Prichard, T.F. Gessel, Rapid measurement of radon concentration in water with a commercial liquid scintillation counter, Health Phys. 33 (1977) 577-581. https://doi.org/10.1097/00004032-197712000-00008
  17. E.L. Cooper, R.M. Brown, G.M. Milton, Determination of ($^{222}Rn$ and ($^{226}Ra$ in environmental by liquid scintillation counter, Environ. Res. Branch 14 (1988) 335-340.
  18. K.A. Aliessa, A.S. Alghamdi, F.I. Almasoud, S. Islam, Measurement of radon levels in groundwater supplies of Riyadh with liquid scintillation counter and the associated radiation dose, Radiat. Protect. Dosim. (2012) 1-9.
  19. V.G. Escobar, F.V. Tome, J.C. Lozano, A.M. Sanchez, Determination of ($^{222}Rn$ and ($^{226}Ra$ in Aqueous samples using a low-level liquid scintillation counter, Appl. Rad. Isot. 47 (1996) 861-867. https://doi.org/10.1016/S0969-8043(96)00076-0
  20. N. Zouridakis, K.M. Ochsenk, A. Savidou, Determination of uranium and radon in potable water samples, J. Environ. Radioact. 61 (2002) 225-232. https://doi.org/10.1016/S0265-931X(01)00125-4
  21. S. Chalupnik, J. Lebecka, Determination of radium isotopes in water samples by means of a low background liquid scintillation spectrometer Quantulus, in: Proceedings of the 14th Europhysics Conference on Nuclear Physics, Bratislava, Czechoslovakia, World Scientific, Singapore, 1990, pp. 327-336.
  22. E. Browne, R.B. Firestone, in: V. Shirley (Ed.), Table of Radioactive Isotopes, Wiley, New York, 1986.
  23. P. Volgyesi, Z. Kis, Z. Szabo, C. Szabo, Using the 186-keV peak for ($^{226}Ra$ activity concentration determination in Hungarian coal-slag samples by gamma-ray spectroscopy, J. Radioanal. Nucl. Chem. 302 (2014) 375-383. https://doi.org/10.1007/s10967-014-3274-z
  24. S.J. Al-Kharouf, I.F. Al-Hamarneh, M. Dababneh, Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan, J. Environ. Radioact. 99 (2008) 1192-1199. https://doi.org/10.1016/j.jenvrad.2008.02.001
  25. K. Debertin, R.G. Helmer, Gamma-and X-ray Spectrometry with Semiconductor Detectors, North-Holland, Amsterdam, 1988.

피인용 문헌

  1. Simultaneous Determination of Gross Alpha/Beta Activities in Groundwater for Ingestion Effective Dose and its Associated Public Health Risk Prevention vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-61203-y
  2. The Potential Use of Zeolite, Montmorillonite, and Biochar for the Removal of Radium-226 from Aqueous Solutions and Contaminated Groundwater vol.8, pp.12, 2018, https://doi.org/10.3390/pr8121537
  3. The analysis of 226 RA in 1‐liter seawater by isotope dilution via single‐collector sector‐field ICP‐MS vol.19, pp.5, 2021, https://doi.org/10.1002/lom3.10428
  4. Cherenkov Radiation Detection on a LS Counter for 226Ra Determination in Water and Its Comparison with Other Common Methods vol.14, pp.21, 2018, https://doi.org/10.3390/ma14216719
  5. Gamma spectrometry analysis of radioiodine in charcoal from high volume aerosol samples vol.178, pp.None, 2018, https://doi.org/10.1016/j.apradiso.2021.109984
  6. A comparison of alpha-particle and gamma-ray spectrometry methods for determination of 235U, 238U and 226Ra activity concentration in samples of coal, slag and fly-ash vol.193, pp.None, 2018, https://doi.org/10.1016/j.radphyschem.2021.109933