DOI QR코드

DOI QR Code

Modeling of neutron diffractometry facility of Tehran Research Reactor using Vitess 3.3a and MCNPX codes

  • Gholamzadeh, Z. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Bavarnegin, E. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Rachti, M.Lamehi (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Mirvakili, S.M. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Dastjerdi, M.H.Choopan (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Ghods, H. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Jozvaziri, A. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Hosseini, M. (Nuclear Science and Technology Research Institute (NSTRI))
  • Received : 2017.03.06
  • Accepted : 2017.10.02
  • Published : 2018.02.25

Abstract

The neutron powder diffractometer (NPD) is used to study a variety of technologically important and scientifically driven materials such as superconductors, multiferroics, catalysts, alloys, ceramics, cements, colossal magnetoresistance perovskites, magnets, thermoelectrics, zeolites, pharmaceuticals, etc. Monte Carlo-based codes are powerful tools to evaluate the neutronic behavior of the NPD. In the present study, MCNPX 2.6.0 and Vitess 3.3a codes were applied to simulate NPD facilities, which could be equipped with different optic devices such as pyrolytic graphite or neutron chopper. So, the Monte Carlo-based codes were used to simulate the NPD facility of the 5 MW Tehran Research Reactor. The simulation results were compared to the experimental data. The theoretical results showed good conformity to experimental data, which indicates acceptable performance of the Vitess 3.3a code in the neutron optic section of calculations. Another extracted result of this work shows that application of neutron chopper instead of monochromator could be efficient to keep neutron flux intensity higher than $10^6n/s/cm^2$ at sample position.

Keywords

References

  1. E.H. Kisi, C.J. Howard, Applications of Neutron Powder Diffraction, Oxford University Press, 2012.
  2. I.S. Anderson, R.L. McGreevy, H.Z. Bilheux, Neutron imaging and applications, Springer Science+ Business Media 200 (2209) (2009) 987-990.
  3. A.D. Stoica, M. Popovici, C.R. Hubbard, S. Spooner, Neutron Monochromators for Residual Stress Mapping at the New HB-2 Beamport, Oak Ridge National Laboratory, Oak Ridge, TN, 1999.
  4. C.M. Mobley, The Construction of a Fermi Neutron Chopper for Cross Section Measurements, MSc Thesis, Rolla, Missouri, 1966.
  5. www.bnc.hu/(2017).
  6. D.J. Hughes, in: Edward Creutz (Ed.), Nuclear Instrumentation I/Instrumentelle Hilfsmittel der Kernphysik I Volume 8/44 of the series Encyclopedia of Physics/Handbuch der Physik, 1959, pp. 390-446.
  7. B. Antonini, N.Merzagora, G. Pauli, A slowneutron chopper for energies between 0.1 and 0.001 eV, Nuclear Instruments and Methods 33 (2) (1965) 229-237. https://doi.org/10.1016/0029-554X(65)90045-5
  8. M. Ono, S. Okamoto, Design and performance of a wide band chopper for neutron small angle scattering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1 (1) (1984) 146-158. https://doi.org/10.1016/0168-583X(84)90486-5
  9. V.L. Mazzocchi, C.B.R. Parente, J. Mestnik-Filho, Y.P. Mascarenhas, Neutron diffraction patterns measured with a high-resolution powder diffractometer installed on a low-flux reactor, in: Research Reactors: Safe Management and Effective Utilization. Proceedings of an International Conference, 2012.
  10. https://www.ne.ncsu.edu/nrp/user-facilities/neutron-diffraction-facility/, 2017.
  11. E. Svab, G. Meszaros, F. Deak, Neutron powder diffractometer at the Budapest research reactor, Materials Science Forum vol. 228 (1996) 247-252. Trans Tech Publications.
  12. M.C. Dastjerdi, H. Khalafi, Y. Kasesaz, S.M. Mirvakili, J. Emami, H. Ghods, A. Ezzati, Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 818 (2016) 1-8.
  13. Y. Kasesaz, H. Khalafi, F. Rahmani, A. Ezati, M. Keyvani, A. Hossnirokh, M.A. Shamami, M. Monshizadeh, A feasibility study of the Tehran research reactor as a neutron source for BNCT, Applied Radiation and Isotopes 90 (2014) 132-137. https://doi.org/10.1016/j.apradiso.2014.03.028
  14. Y. Kasesaz, H. Khalafi, F. Rahmani, A. Ezzati, M. Keyvani, A. Hossnirokh, M.A. Shamami, S. Amini, Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor, Applied Radiation and Isotopes 94 (2014) 149-151. https://doi.org/10.1016/j.apradiso.2014.08.004
  15. Y. Kasesaz, H. Khalafi, F. Rahmani, Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor, Annals of Nuclear Energy 68 (2014) 234-238. https://doi.org/10.1016/j.anucene.2014.01.014
  16. E. Bavarnegin, A. Sadremomtaz, H. Khalafi, Y. Kasesaz, M. Golshanian, H. Ghods, A. Ezzati, M. Keyvani, M. Haddadi, Measurement and simulation of the TRR BNCT beam parameters, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 830 (2016) 53-58.
  17. E. Bavarnegin, H. Khalafi, A. Sadremomtaz, Y. Kasesaz, A. Khajeali, Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N-isopropylacrylamide gel, Nuclear Engineering and Technology 49 (2017) 189-195. https://doi.org/10.1016/j.net.2016.07.012
  18. E. Bavarnegin, H. Khalafi, A. Sadremomtaz, Y. Kasesaz, Construction of a head phantom for mixed neutron and gamma field dosimetry in TRR, Measurement 89 (2016) 145-150. https://doi.org/10.1016/j.measurement.2016.03.070
  19. Lieutenanta K., Zsigmondb G., Frommea M. and Manoshina S., General features of the Neutron Instrument Simulation Package VITESS.
  20. M. Furusaka, K. Niita, S. Suzuki, K. Fujita, J. Suzuki, T. Oku, H.M. Shimizu, T. Otomo, M. Misawa, Monte-Carlo simulation codes development and their applications to neutron optical devices and neutron scattering instruments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 529 (1) (2004) 223-230. https://doi.org/10.1016/j.nima.2004.04.211
  21. E. Brydevall, Coupling of Neutron Optics and Shielding Using Vitess and Geant vol. 4, 2016.
  22. D.B. Pelowitz, Users' Manual version of MCNPX2.6.0, LANL, LA-CP-07-1473, 2008.
  23. M. Adib, N. Habib, M.S. El-Mesiry, M. Fathallah, Characteristics of pyrolytic graphite as a neutron monochromator, Energy and Environment Research 2 (1) (2012) 35.
  24. J.F. Briesmeister, MCNP-A General Monte Carlo N-Particle Transport code Version4C, Los Alamos National Laboratory Report, USA, LA-13709-M, 2000.
  25. P. Wang, B. Yang, W.L. Cai, Development of a bandwidth limiting neutron chopper for CSNS, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 792 (2015) 56-60.
  26. T. Riste, K. Otnes, Oriented graphite as a neutron monochromator, Nuclear Instruments and Methods 75 (2) (1969) 197-202. https://doi.org/10.1016/0029-554X(69)90594-1
  27. I.E. Stamatelatos, S. Messoloras, Sapphire filter thickness optimization in neutron scattering instruments, Review of Scientific Instruments 71 (1) (2000) 70-73. https://doi.org/10.1063/1.1150163
  28. M. Adib, Cross-Section of Single-Crystal Materials used as Thermal Neutron Filters, in: VII Radiation Physics & Protection Conference, 27-30 November 2004, Ismailia-Egypt, 2005, pp. 225-234.

Cited by

  1. Modeling and experimental production yield of 64Cu with natCu and natCu-NPs in Tehran Research Reactor vol.51, pp.1, 2018, https://doi.org/10.1016/j.net.2018.08.008