References
- S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. 206 (1993) 266-286. https://doi.org/10.1016/0022-3115(93)90128-L
- C. Xu, L. Zhang, W. Qian, J. Mei, X. Liu, The studies of irradiation hardening of stainless steel reactor internals under proton and xenon irradiation, Nucl. Eng. Technol. 48 (2016) 758-764. https://doi.org/10.1016/j.net.2016.01.007
-
W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at
$550^{\circ}C$ , Nucl. Eng. Technol. 48 (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004 - P.B. Zhang, C. Zhang, R.H. Li, J.J. Zhao, He-induced vacancy formation in bcc Fe solid from first-principles simulation, J. Nucl. Mater. 444 (2014) 147-152. https://doi.org/10.1016/j.jnucmat.2013.09.048
- H. Ullmaier, The influence of helium on the bulk properties of fusion reactor structural materials, Nucl. Fusion 24 (1984) 1039-1083. https://doi.org/10.1088/0029-5515/24/8/009
- S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions, J. Nucl. Mater. 199 (1992) 173-191.
- C.C. Wang, C. Zhang, Z.G. Yang, J.J. Zhao, Multiscale simulation of yield strength in reduced-activation ferritic/martensitic steel, Nucl. Eng. Technol. 49 (2017) 569-575. https://doi.org/10.1016/j.net.2016.10.006
- R.H. Li, P.B. Zhang, X.J. Li, J.H. Ding, Y.Y. Wang, J.J. Zhao, L. Vitos, Effects of Cr and W additions on the stability and migration of He in bcc Fe: a firstprinciples study, Comput. Mater. Sci. 123 (2016) 85-92. https://doi.org/10.1016/j.commatsci.2016.06.019
- N. Hashimoto, T.S. Byun, K. Farrell, S.J. Zinkle, Deformation microstructure of neutron-irradiated pure polycrystalline metals, J. Nucl. Mater. 1309 (2004) 947-952.
- F.A. Garner, M.B. Toloczko, B.H. Sencer, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. Nucl. Mater. 276 (2000) 123-142. https://doi.org/10.1016/S0022-3115(99)00225-1
- W.B. Liu, Y.Z. Ji, P.K. Tan, C. Zhang, C.H. He, Z.G. Yang, Microstructure evolution during helium irradiation and post-irradiation annealing in a nanostructured reduced activation steel, J. Nucl. Mater. 479 (2016) 1303-1330.
- H. Trinkaus, B.N. Singh, Helium accumulation in metals during irradiation e where do we stand? J. Nucl. Mater. 1303 (2003) 229-242.
- J. Henry, M.H. Mathon, P. Jung, Microstructural analysis of 9% Cr martensitic steels containing 0.5 at.% helium, J. Nucl. Mater. 318 (2003) 249-259. https://doi.org/10.1016/S0022-3115(03)00118-1
- Z. Jiao, N. Ham, G.S. Was, Microstructure of helium-implanted and protonirradiated T91 ferritic/martensitic steel, J. Nucl. Mater. 367 (2007) 440-445.
- Y. Sekio, S. Yamashita, N. Sakaguchi, H. Takahashi, Void denuded zone formation for Fee15Cre15Ni steel and PNC316 stainless steel under neutron and electron irradiations, J. Nucl. Mater. 458 (2015) 355-360. https://doi.org/10.1016/j.jnucmat.2014.12.054
- B. Mazumder, M.E. Bannister, F.W. Meyer, M.K. Miller, C.M. Parish, P.D. Edmondson, Helium trapping in carbide precipitates in a tempered F82H ferriticemartensitic steel, Nucl. Mater. Energy 1 (2015) 8-12. https://doi.org/10.1016/j.nme.2014.11.001
- B.N. Singh, Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel, Philos. Mag. 29 (1974) 25-42. https://doi.org/10.1080/14786437408213551
- B.N. Singh, A. Foreman, Calculated grain size-dependent vacancy supersaturation and its effect on void formation, Philos. Mag. 29 (1974) 847-857. https://doi.org/10.1080/14786437408222075
- R. Bullough, M.R. Hayns, M.H. Wood, Sink strengths for thin film surfaces and grain boundaries, J. Nucl. Mater. 90 (1980) 44-59. https://doi.org/10.1016/0022-3115(80)90244-5
- K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, X. Zhang, Radiation damage in helium ion irradiated nanocrystalline Fe, J. Nucl. Mater. 425 (2012) 140-146. https://doi.org/10.1016/j.jnucmat.2011.10.052
- N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater. 50 (2002) 4603-4616. https://doi.org/10.1016/S1359-6454(02)00310-5
- R.E. Stoller, M.B. Toloczko, et al., On the use of SRIM for computing radiation damage exposure, Nucl. Instr. Meth. Phys. Res., Sect. B. 310 (2013) 75-80. https://doi.org/10.1016/j.nimb.2013.05.008
- Y. Matsukawa, S.J. Zinkle, Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations, J. Nucl. Mater. 1309 (2004) 919-923.
- M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T.D. De La Rubia, J.M. Perlado, Comparative study of radiation damage accumulation in Cu and Fe, J. Nucl. Mater. 276 (2000) 13-21. https://doi.org/10.1016/S0022-3115(99)00220-2
- E.G. Fu, A. Misra, H. Wang, L. Shao, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers, J. Nucl. Mater. 407 (2010) 178-188. https://doi.org/10.1016/j.jnucmat.2010.10.011
- H. Trinkaus, Modeling of helium effects in metals: high temperature embrittlement, J. Nucl. Mater. 133 (1985) 105-112.
- B.N. Singh, T. Leffers, M. Victoria, W.V. Green, Relation between mechanicalproperties and microstructure under fusion irradiation conditions, Rad. Eff. 101 (1987) 91-107. https://doi.org/10.1080/00337578708224738
- C. Dethloff, E. Gaganidze, V.V. Svetukhin, J. Aktaa, Modeling of helium bubble nucleation and growth in neutron irradiated boron doped RAFM steels, J. Nucl. Mater. 426 (2012) 287-297. https://doi.org/10.1016/j.jnucmat.2011.12.025
- J.H. Evans, An interbubble fracture mechanism of blister formation on heliumirradiated metals, J. Nucl. Mater 68 (1977) 129-140. https://doi.org/10.1016/0022-3115(77)90232-X
Cited by
- Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER vol.9, pp.12, 2018, https://doi.org/10.3390/mi9120633
- Enhanced Radiation Tolerance of Tungsten Nanoparticles to He Ion Irradiation vol.8, pp.12, 2018, https://doi.org/10.3390/nano8121052
- Radiation induced grain boundary segregation in ferritic/martensitic steels vol.52, pp.1, 2018, https://doi.org/10.1016/j.net.2019.07.009
- Displacement cascade evolution in tungsten with pre-existing helium and hydrogen clusters: a molecular dynamics study vol.111, pp.8, 2018, https://doi.org/10.3139/146.111927
- Experimental and theoretical analysis of equilibrium segregation and radiation-induced segregation of Cr at grain boundaries in a reduced activation ferritic/martensitic (RAFM) steel vol.28, pp.4, 2018, https://doi.org/10.1007/s42243-020-00484-z
- Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 °C and 450 °C* vol.30, pp.5, 2018, https://doi.org/10.1088/1674-1056/abd6f9