참고문헌
- Wu, Y., Saito, N., Nae, F. A., Inoue, Y., and Takai, O., 2006, Water droplets interaction with super-hydrophobic surfaces, Surface Science, Vol. 600, pp. 3710-3714. https://doi.org/10.1016/j.susc.2006.01.073
- Jung, Y. C. and Bhushan, B., 2010, Biomimetic structures for fluid drag reduction in laminar and turbulent flows, J. Phys. Condens. Matter, Vol. 22, pp. 032101-036003. https://doi.org/10.1088/0953-8984/22/3/032101
- Wenzel, R. N., 1936, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem, Vol. 28, pp. 988-994. https://doi.org/10.1021/ie50320a024
- Cassie, A. B. D. and Baxter, S., 1944, Wettability of porous surfaces, Trans. Faraday Soc., Vol. 40, pp. 546-551. https://doi.org/10.1039/tf9444000546
- Kim, H. M., Lee, C., Kim, M. H., and Kim, J. W., 2012, Drop impact characteristics and structure effects of hydrophobic surfaces with micro- and/or nanoscaled structures, Lanmuir, Vol. 28, pp. 11250-11257. https://doi.org/10.1021/la302215n
- Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C. D. W., and Riehle, M. O., 2005, Superhydrophobicity and superhydrophilicity of regular nanopatterns, Nano Letter, Vol. 5, No. 10, pp. 2097-2103. https://doi.org/10.1021/nl051435t
- Lundgren, M., Allan, N. L., and Cosgove, T., 2007, Modeling of wetting : a study of nanowetting at rough and heterogeneous surfaces, Langmuir, Vol. 23, pp. 1187-1194. https://doi.org/10.1021/la060712o
- Jung, W.-J., Ha, M. Y., Yoon, H. S., and Ambrosia, M., 2012, Dynamic behavior of water droplets on solid surfaces with pillar type nanostructures, Langmuir, Vol. 28, No. 12, pp. 5360-5371. https://doi.org/10.1021/la205106v
- Kwon, T. W., AMbrosia, M. S., Jang, J. K., and Ha, M. Y., 2015, Dynamic hydrophoibicity of heterogeneous pillared surfaces at the nano-scale, Journal of Mechanical Science and Technology, Vol. 29, No. 4, pp. 1-9.
- Sun, K. W., Kwon, T. W., and Ha, M. Y., 2015, A numerical study on wetting characteristics of water droplet on the nanosized wavy-patterned surface and stripe-patterned surface, KSME, pp. 4160-4165.
- Koishi, T., Yasuoka, K., Fujikawa, S., and Zeng, X. C., 2011, Measurement of contact angle hysteresis for droplets on nanopillared surface and in the Cassie and Wenzel states : A molecular dynamics simulation study, ACSNANO, Vol. 5, No. 9, pp. 6834-6842.
- Song, F. H., Li, B. Q., and Liu, C., 2012, Molecular dynamics simulation of nanosized water droplet spreading in an electric field, Langmuir, Vol. 29, pp. 4266-4274.
- Yoo, M. J., Kwon, T. W., and Ha, M. Y., 2016, Wetting characteristics of water droplet on the solid surfaces with variable pillar-type nanostructures, KSME, Vol. 40, pp. 659-666.
- Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T., and Koumoutsakos, P., 2003, On the water carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes, J Phys Chem B, Vol. 107, No. 6, pp. 1345-1352. https://doi.org/10.1021/jp0268112
- Hong, S. D., Ha, M. Y., and Balachandar, S., 2009, Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation, Journal of Colloid and Interface Science, Vol. 339, No. 1, pp. 187-195. https://doi.org/10.1016/j.jcis.2009.07.048
- Ko, J. A., Ambrosia, M., and Ha, M. Y., 2015, A study of the wetting characteristics of a nano-sized water droplet on heterogeneous striped surfaces, Computer & Fluids, Vol. 112, pp. 19-34. https://doi.org/10.1016/j.compfluid.2015.02.005
- Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L. V., Skeel, R. D., and K. Schulte, 1996, NAMD : A parallel, object-oriented molecular dynamics program, The international journal of Supercomputer application and high performance computing, Vol. 10, No. 4, pp. 251-268. https://doi.org/10.1177/109434209601000401
- Eral, H. B., Mannetje, D. J. C. M., and Oh. J. M., 2013, Contact angle hysteresis : a review of fundamentals and application, Colloid Polym Sci., Vol. 2, pp. 247-260.
- Choi, H. J., Hong, S.-D., Yoon, H. S., and Ha, M. Y., 2009, Molecular dynamics simulation of water droplet on the periodic stripe patterned surfaces, KSME, pp. 302-305.