DOI QR코드

DOI QR Code

Identification of a Technique Optimized for the Isolation of Spermatogonial Stem Cells from Mouse Testes

  • Han, Na Rae (Department of Animal Life Science, Kangwon National University) ;
  • Park, Hye Jin (Department of Animal Life Science, Kangwon National University) ;
  • Lee, Hyun (Department of Animal Life Science, Kangwon National University) ;
  • Yun, Jung Im (Institute of Animal Resources, Kangwon National University) ;
  • Choi, Kimyung (Optipharm Incorporation) ;
  • Lee, Eunsong (College of Veterinary Medicine, Kangwon National University) ;
  • Lee, Seung Tae (Department of Animal Life Science, Kangwon National University)
  • Received : 2018.10.24
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

To date, there are no protocols optimized to the effective separation of spermatogonial stem cells (SSCs) from testicular cells derived from mouse testes, thus hindering studies based on mouse SSCs. In this study, we aimed to determine the most efficient purification method for the isolation of SSCs from mouse testes among previously described techniques. Isolation of SSCs from testicular cells derived from mouse testes was conducted using four different techniques: differential plating (DP), magnetic-activated cell sorting (MACS) post-DP, MACS, and positive and negative selection double MACS. DP was performed for 1, 2, 4, 8, or 16 h, and MACS was performed using EpCAM ($MACS^{EpCAM}$), Thy1 ($MACS^{Thy1}$), or GFR ${\alpha}1$ ($MACS^{GFR{\alpha}1}$) antibodies. The purification efficiency of each method was analyzed by measuring the percentage of cells that stained positively for alkaline phosphatase. DP for 8 h, $MACS^{Thy1}$ post-DP for 8 h, $MACS^{GFR{\alpha}1}$, positive selection double $MACS^{GFR{\alpha}1/EpCAM}$, and negative selection double $MACS^{GFR{\alpha}1/{\alpha}-SMA}$ were identified as the optimal protocols for isolation of SSCs from mouse testicular cells. Comparison of the purification efficiencies of the optimized isolation protocols showed that, numerically, the highest purification efficiency was obtained using $MACS^{GFR{\alpha}1}$. Overall, our results indicate that $MACS^{GFR{\alpha}1}$ is an appropriate purification technique for the isolation of SSCs from mouse testicular cells.

Keywords

References

  1. Aliakbari F, Yazdekhasti H, Abbasi M, Hajian Monfared M, Baazm M. 2016. Advances in cryopreservation of spermatogonial stem cells and restoration of male fertility. Microsc Res Tech. 79:122-129. https://doi.org/10.1002/jemt.22605
  2. Aponte PM. 2015. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells. 7:669-680. https://doi.org/10.4252/wjsc.v7.i4.669
  3. de Rooij DG. 2017. The nature and dynamics of spermatogonial stem cells. Development. 144:3022-3030. https://doi.org/10.1242/dev.146571
  4. Dym M, He Z, Jiang J, Pant D, Kokkinaki M. 2009. Spermatogonial stem cells: unlimited potential. Reprod Fertil Dev. 21:15-21.
  5. Forbes CM, Flannigan R, Schlegel PN. 2017. Spermatogonial stem cell transplantation and male infertility: Current status and future directions. Arab J Urol. 16:171-180.
  6. Garcia-Vazquez FA, Ruiz S, Matas C, Izquierdo-Rico MJ, Grullon LA, De Ondiz A, Vieira L, Aviles-Lopez K, Gutierrez-Adan A, Gadea J. 2010. Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction. 140:259-272. https://doi.org/10.1530/REP-10-0129
  7. Giassetti MI, Goissis MD, de Barros F, Bruno AH, Assumpcao M, Visintin JA. 2016. Comparison of Diverse Differential Plating Methods to Enrich Bovine Spermatogonial Cells. Reprod Domest Anim. 51:26-32. https://doi.org/10.1111/rda.12641
  8. Goossens E, Frederickx V, De Block G, Van Steirteghem AC, Tournaye H. 2003. Reproductive capacity of sperm obtained after germ cell transplantation in a mouse model. Hum Reprod. 18:1874-1880. https://doi.org/10.1093/humrep/deg360
  9. Guo Y, Hai Y, Gong Y, Li Z, He Z. 2014. Characterization, isolation, and culture of mouse and human spermatogonial stem cells. J Cell Physiol. 229:407-413. https://doi.org/10.1002/jcp.24471
  10. Hamra FK, Chapman KM, Wu Z, Garbers DL. 2008. Isolating highly pure rat spermatogonial stem cells in culture. Methods Mol Biol. 450:163-179.
  11. He Y, Chen X, Zhu H, Wang D. 2015. Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells. Cytotechnology. 67:921-930. https://doi.org/10.1007/s10616-015-9850-4
  12. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. 2012. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development. 139:1734-1743. https://doi.org/10.1242/dev.076539
  13. Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, Yuen C, Greilach S, Zhao HH, Chow M, Chow YC, Rao J, Barritt J, Bar-Chama N, Copperman A. 2011. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod. 26:1296-1306. https://doi.org/10.1093/humrep/der026
  14. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T. 2004. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 119:1001-1012. https://doi.org/10.1016/j.cell.2004.11.011
  15. Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T. 2008. Production of Transgenic Rats via Lentiviral Transduction and Xenogeneic Transplantation of Spermatogonial Stem Cells. Biol Reprod. 79:1121-1128. https://doi.org/10.1095/biolreprod.108.071159
  16. Kanatsu-Shinohara M, Takashima S, Shinohara T. 2010. Transmission distortion by loss of p21 or p27 cyclin-dependent kinase inhibitors following competitive spermatogonial transplantation. Proc Natl Acad Sci U S A. 107:6210-6215. https://doi.org/10.1073/pnas.0914448107
  17. Kawasaki T, Siegfried KR, Sakai N. 2016. Differentiation of zebrafish spermatogonial stem cells to functional sperm in culture. Development. 143:566-574. https://doi.org/10.1242/dev.129643
  18. Kim BG, Kim YH, Lee YA, Kim BJ, Kim KJ, Jung SE, Chung HJ, Hwang S, Choi SH, Kim MJ, Kim DH, Kim IC, Kim MK, Kim NH, Kim CG, Ryu BY. 2014. Production of transgenic spermatozoa by lentiviral transduction and transplantation of porcine spermatogonial stem cells. Tissue Eng Regen Med. 11: 458-466. https://doi.org/10.1007/s13770-014-0078-8
  19. Lee YA, Kim YH, Kim BJ, Jung MS, Auh JH, Seo JT, Park YS, Lee SH, Ryu BY. 2013. Cryopreservation of Mouse Spermatogonial Stem Cells in Dimethylsulfoxide and Polyethylene Glycol. Biol Reprod. 89:109
  20. Liu S, Tang Z, Xiong T, Tang W. 2011. Isolation and characterization of human spermatogonial stem cells. Reprod Biol Endocrinol. 9:141. https://doi.org/10.1186/1477-7827-9-141
  21. Miersch C, Stange K, Rontgen M. 2018. Effects of trypsinization and of a combined trypsin, collagenase, and DNase digestion on liberation and in vitro function of satellite cells isolated from juvenile porcine muscles. In Vitro Cell Dev Biol Anim. 54:406-412. https://doi.org/10.1007/s11626-018-0263-5
  22. Park MH, Park JE, Kim MS, Lee KY, Park HJ, Yun JI, Choi JH, Lee Es, Lee ST. 2014. Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes. J Assist Reprod Genet. 31:983-991. https://doi.org/10.1007/s10815-014-0271-7
  23. Phillips BT, Gassei K, Orwig KE. 2010. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 365:1663-1678. https://doi.org/10.1098/rstb.2010.0026
  24. Rastegar T, Minaee MB, Habibi Roudkenar M, Raghardi Kashani I, Amidi F, Abolhasani F, Barbarestani M. 2013. Improvement of Expression of ${\alpha}6$ and ${\beta}1$ Integrins by the Co-culture of Adult Mouse Spermatogonial Stem Cells with SIM Mouse Embryonic Fibroblast Cells (STO) and Growth Factors. Iran J Basic Med Sci. 16:134-139.
  25. Sakai M, Masaki K, Aiba S, Tone M, Takashima S. 2018. Expression dynamics of self-renewal factors for spermatogonial stem cells in the mouse testis. J Reprod Dev. 64:267-275. https://doi.org/10.1262/jrd.2018-015
  26. Schmidt VM, Isachenko V, Rappl G, Rahimi G, Hanstein B, Morgenstern B, Mallmann P, Isachenko E. 2018. Comparison of the enzymatic efficiency of Liberase TM and tumor dissociation enzyme: effect on the viability of cells digested from fresh and cryopreserved human ovarian cortex. Reprod Biol Endocrinol. 16:57. https://doi.org/10.1186/s12958-018-0374-6
  27. Takashima S, Shinohara T. 2018. Culture and transplantation of spermatogonial stem cells. Stem Cell Res. 29:46-55. https://doi.org/10.1016/j.scr.2018.03.006
  28. Wang Y, Zhao X, Du W, Liu J, Chen W, Sun C, Cui B, Zeng Z, Shen Y, Gao F, Wang A, Liu G, Cui H. 2017. Production of Transgenic Mice Through Sperm-Mediated Gene Transfer Using Magnetic Nano-Carriers. J Biomed Nanotechnol. 13:1673-1681. https://doi.org/10.1166/jbn.2017.2456
  29. Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. 2010. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 16:312-328. https://doi.org/10.1093/humupd/dmp054
  30. Yango P, Altman E, Smith JF, Klatsky PC, Tran ND. 2014. Optimizing cryopreservation of human spermatogonial stem cells: comparing the effectiveness of testicular tissue and single cell suspension cryopreservation. Fertil Steril. 102:1491-1498.e1 https://doi.org/10.1016/j.fertnstert.2014.07.1250
  31. Zhang R, Sun J, Zou K. 2016. Advances in Isolation Methods for Spermatogonial Stem Cells. Stem Cell Rev. 12: 15-25. https://doi.org/10.1007/s12015-015-9632-6
  32. Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. 2014. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction. 147:R65-74. https://doi.org/10.1530/REP-13-0466