DOI QR코드

DOI QR Code

Structural Changes of Zona Pellucida Surface of Immature, In vivo and In vitro Matured Canine Oocytes Using Scanning Electron Microscopy

  • Received : 2018.12.03
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

Zona pellucida (ZP), a primarily representative coat of mammalian egg and embryo, has an extremely heterogeneous morphology during different developmental stages. The objective of the present study was to compare the morphological changes of the ZP surface of immature, in vitro and in vivo matured canine oocytes by using scanning electron microscopy (SEM). Canine ovaries were collected from local veterinary hospitals to recover immature oocytes. The ovaries were sliced and the released cumulus oocyte complexes (COCs) were washed with TL-HEPES. The selected COCs were randomly divided into two groups, first group was processed immediately at immature state and the second group was processed 72 h after in vitro maturation, and compared with in vivo derived oocytes. Oocytes were fixed, critical point dried and examined under SEM. The diameters of oocyte and outer holes of the ZP were measured on a total of 249 oocytes; the results were analyzed using One-way ANOVA. Our results showed that, the diameter of immature oocytes significantly differed (p < 0.05) from that of in vivo matured oocytes ($79.60{\pm}0.77{\mu}m$ vs. $101.46{\pm}1.07{\mu}m$, respectively). Similarly, a significant difference (p < 0.05) in the diameters between those of in vitro and in vivo matured oocytes were found ($79.51{\pm}2.36{\mu}m$ vs. $101.46{\pm}1.07{\mu}m$, respectively). Moreover, the diameters of the outer holes of the ZP were significantly (p < 0.05) larger in in vivo matured ($1.48{\pm}0.42{\mu}m$) than in vitro matured for 72 and immature oocytes ($1.10{\pm}0.16$ and $0.43{\pm}0.12{\mu}m$, respectively). Taken together, these data indicates that the ZP surface is related to oocyte maturity in canine.

Keywords

References

  1. Bleil J. D.; Wassarman P. M., 1983: Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol., 95 317-324. https://doi.org/10.1016/0012-1606(83)90032-5
  2. Clark G. F., 2010: The mammalian zona pellucida: a matrix that mediates both gamete binding and immune recognition? Syst. Biol. Reprod. Med., 56 349-364. https://doi.org/10.3109/19396360903524812
  3. De los Reyes M.; Hetz J.; Palomino J., 2009: Ultrastructural study of the canine zona pellucida surface during in vitro maturation. Reprod Domest Anim, 44 Suppl 2 247-250. https://doi.org/10.1111/j.1439-0531.2009.01374.x
  4. Fujiwara H.; Araki Y.; Toshimori K., 2009: Is the zona pellucida an intrinsic source of signals activating maternal recognition of the developing mammalian embryo? J. Reprod. Immunol., 81 1-8. https://doi.org/10.1016/j.jri.2009.04.001
  5. Funahashi H.; Ekwall H.; Rodriguez-Martinez H., 2000: Zona reaction in porcine oocytes fertilized in vivo and in vitro as seen with scanning electron microscopy. Biol. Reprod., 63 1437-1442. https://doi.org/10.1095/biolreprod63.5.1437
  6. Guraya S. S., 1965: A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog. J. Exp. Zool., 160 123-135. https://doi.org/10.1002/jez.1401600111
  7. Herrler A.; Beier H. M., 2000: Early embryonic coats: morphology, function, practical applications. An overview. Cells Tissues Organs, 166 233-246. https://doi.org/10.1159/000016736
  8. Jang G.; Kim M. K.; Oh H. J.; Hossein M. S.; Fibrianto Y. H.; Hong S. G.; Park J. E.; Kim J. J.; Kim H. J.; Kang S. K.; Kim D. Y.; Lee B. C., 2007: Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology, 67 941-947. https://doi.org/10.1016/j.theriogenology.2006.11.006
  9. Kolbe T.; Holtz W., 2005: Differences in proteinase digestibility of the zona pellucida of in vivo and in vitro derived porcine oocytes and embryos. Theriogenology, 63 1695-1705. https://doi.org/10.1016/j.theriogenology.2004.07.023
  10. Luvoni G. C.; Chigioni S.; Allievi E.; Macis D., 2005: Factors involved in vivo and in vitro maturation of canine oocytes. Theriogenology, 63 41-59. https://doi.org/10.1016/j.theriogenology.2004.03.004
  11. Mesalam A.; Khan I.; Lee K. L.; Song S. H.; Chowdhury M. M. R.; Uddin Z.; Park K. H.; Kong I. K., 2017a: 2-Methoxystypandrone improves in vitro-produced bovine embryo quality through inhibition of IKBKB. Theriogenology, 99 10-20. https://doi.org/10.1016/j.theriogenology.2017.05.012
  12. Mesalam A.; Kong R.; Khan I.; Chowdhury M.; Choi B. H.; Kim S. W.; Cho K. W.; Jin J. I.; Kong I. K., 2017b: Effect of charcoal:dextran stripped fetal bovine serum on in vitro development of bovine embryos. Reprod. Biol., 17 312-319.
  13. Mesalam A.; Lee K. L.; Khan I.; Chowdhury M. M. R.; Zhang S.; Song S. H.; Joo M. D.; Lee J. H.; Jin J. I.; Kong I. K., 2018: A combination of bovine serum albumin with insulintransferrin- sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases. Reprod. Fertil. Dev.
  14. Michelmann H. W.; Rath D.; Topfer-Petersen E.; Schwartz P., 2007: Structural and functional events on the porcine zona pellucida during maturation, fertilization and embryonic development: a scanning electron microscopy analysis. Reprod Domest Anim, 42 594-602. https://doi.org/10.1111/j.1439-0531.2006.00829.x
  15. Moreira da Silva F.; Metelo R., 2005: Relation between physical properties of the zona pellucida and viability of bovine embryos after slow-freezing and vitrification. Reprod Domest Anim, 40 205-209. https://doi.org/10.1111/j.1439-0531.2005.00575.x
  16. Reynaud K.; Chebrout M.; Tanguy-Dezaux C.; de la Villeon G.; Chastant-Maillard S., 2012: Chromatin patterns of immature canine oocytes after in vitro maturation. Reprod Domest Anim, 47 Suppl 6 70-73. https://doi.org/10.1111/rda.12054
  17. Reynaud K.; Fontbonne A.; Marseloo N.; Viaris de Lesegno C.; Saint-Dizier M.; Chastant-Maillard S., 2006: In vivo canine oocyte maturation, fertilization and early embryogenesis: a review. Theriogenology, 66 1685-1693. https://doi.org/10.1016/j.theriogenology.2006.01.049
  18. Royere D., 2006: [Oocyte maturation: can oocyte competence be defined?]. J. Gynecol. Obstet. Biol. Reprod. (Paris), 35 2S8-2S13. https://doi.org/10.1016/S0368-2315(06)76369-4
  19. Santos P.; Chaveiro A.; Simoes N.; Moreira da Silva F., 2008: Bovine oocyte quality in relation to ultrastructural characteristics of zona pellucida, polyspermic penetration and developmental competence. Reprod Domest Anim, 43 685-689. https://doi.org/10.1111/j.1439-0531.2007.00970.x
  20. Songsasen N.; Wesselowski S.; Carpenter J. W.; Wildt D. E., 2012: The ability to achieve meiotic maturation in the dog oocyte is linked to glycolysis and glutamine oxidation. Mol. Reprod. Dev., 79 186-196. https://doi.org/10.1002/mrd.22011
  21. Suzuki H.; Ju J. C.; Yang X., 2000: Surface ultrastructural alterations of bovine oocytes after parthenogenetic activation. Cloning, 2 69-78. https://doi.org/10.1089/152045500436096
  22. Tesoriero J. V., 1982: A morphologic, cytochemical, and chromatographic analysis of lipid yolk formation in the oocytes of the dog. Gamete Res., 6 267-279. https://doi.org/10.1002/mrd.1120060309
  23. Vanroose G.; Nauwynck H.; Soom A. V.; Ysebaert M. T.; Charlier G.; Oostveldt P. V.; de Kruif A., 2000: Structural aspects of the zona pellucida of in vitro-produced bovine embryos: a scanning electron and confocal laser scanning microscopic study. Biol. Reprod., 62 463-469. https://doi.org/10.1095/biolreprod62.2.463
  24. Wassarman P. M., 2008: Zona pellucida glycoproteins. J. Biol. Chem., 283C