DOI QR코드

DOI QR Code

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption

중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구

  • Hwang, Juyeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Min, Hae-Hyun (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Park, You-In (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Chang, Jong-San (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Park, Yong-Ki (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Cho, Churl-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Han, Moon-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 황주연 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 민혜현 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 박유인 (국가과학기술연구회 CCP융합연구단) ;
  • 장종산 (국가과학기술연구회 CCP융합연구단) ;
  • 박용기 (국가과학기술연구회 CCP융합연구단) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 한문희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2018.12.28
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

본 연구에서는 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동을 예측하기 위하여 제올라이트 13X 입자의 프로필렌 및 프로페인 단일기체에 대한 중량식흡착 거동을 관찰하고자 하였다. 제올라이트 13X 입자의 프로필렌 및 프로페인에 대한 중량식흡착 거동은 자성부유평형저울(MSB)을 이용하여 323, 343, 363 K의 온도와 0.02-1 bar의 압력 범위에서 0.1 bar씩 증가시키면서 측정되었다. 그 결과, 온도가 증가할수록 프로필렌 및 프로페인의 흡착량은 감소하였으며, 프로필렌/프로페인의 흡착 선택도는 증가하였다. 또한 흡착 온도가 증가함에 따라 프로필렌과 프로페인의 확산계수는 증가하여 아레니우스 식을 따랐고, 프로필렌/프로페인 확산 선택도는 323 K에서 0.9753으로 최대값을 가졌다. 흡착 특성을 통해 분리막의 투과선택도를 계산하였고, Na형 Faujasite 제올라이트 분리막의 단일 기체 투과 특성과 비교하였다. 그 결과 계산된 투과선택도와 측정된 투과선택도가 모두 323 K에서 최대값을 갖는 것을 확인하였다. 따라서 본 연구에서는 중량식 흡착법으로 예측된 분리막의 프로필렌/프로페인 분리거동 예측이 합리적이며 또한 표면확산에 기반한 프로필렌/프로페인 분리용 제올라이트 분리막의 분리성능예측에 적용될 수 있음을 알 수 있었다.

Keywords

References

  1. Public investment bank berhad, "Important disclaimer is provided at the end of this report", 1, 8, Public investment bank berhad research team, Malaysia (2017).
  2. R. B. Eldridge, "Olefin/paraffin separation technology: A review", Ind. Eng. Chem. Res., 32, 2208 (1993). https://doi.org/10.1021/ie00022a002
  3. P. Angelini, "Materials for separation technologies: Energy and emission reduction opportunities", Energy Efficiency & Renewable Energy, Department of Energy, USA (2005).
  4. C. A. Grande and A. E. Rodrigues, "Propane/propylene separation by Pressure Swing Adsorption using zeolite 4A", Ind. Eng. Chem. Res., 44, 8815 (2005). https://doi.org/10.1021/ie050671b
  5. N. Kosinov, J. Gascon, F. Kapteijn, and E. J. M. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016). https://doi.org/10.1016/j.memsci.2015.10.049
  6. R. Zarca, A. Ortiz, D. Gorri, L. T. Biegler, and I. Ortiz, "Optimized distillation coupled with state-of-the-art membranes for propylene purification", J. Membr. Sci., 556, 321 (2018). https://doi.org/10.1016/j.memsci.2018.04.016
  7. H. J. Shin, S. H. Choi, J. H. Kim, I. J. Park, and S. B. Lee, "Permeation behavior of olefin/N itrogen through siloxane based polymeric membranes", Membr. J., 13, 246 (2003).
  8. M. Das and W. J. Koros, "Performance of 6FDA-6FpDA polyimide for propylene/propane separations", J. Membr. Sci., 365, 399 (2010). https://doi.org/10.1016/j.memsci.2010.09.029
  9. C. Staudt-Bickel and W. J. Koros, "Olefin/paraffin gas separations with 6FDA-based polyimide membranes", J. Membr. Sci., 170, 205 (2000). https://doi.org/10.1016/S0376-7388(99)00351-8
  10. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, J. H. Moon, and C. H. Lee, "A simultaneous improvement in $CO_2$ flux and $CO_2$/$N_2$ separation factor of sodium- type FAU zeolite membranes through 13X zeolite beads embedding", Membr. J., 17, 269 (2007).
  11. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, and S. H. Hyun, "Secondary growth of sodium type faujasite zeolite layers on a porous ${\alpha}$- $Al_2O_3$ tube and the $CO_2$/$N_2$ separation", Membr. J., 17, 254 (2007).
  12. B. H. Jeong, Y. Hasegawa, K. I. Sotowa, K. Kusakabe, and S. Morooka, "Permeation of binary mixtures of benzene and saturated C4-C7 hydrocarbons through an FAU-type zeolite membrane", J. Membr. Sci., 213, 115 (2003). https://doi.org/10.1016/S0376-7388(02)00518-5
  13. H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, "Preparation of faujasite membranes and their permeation properties", Sep. Purif. Technol., 25, 261 (2001). https://doi.org/10.1016/S1383-5866(01)00110-1
  14. Y. Hasegawa, T. Tanaka, K. Watanabe, B. H. Jeong, K. Kusakabe, and S. Morooka, "Separation of $CO_2$-$CH_4$ and $CO_2$-$N_2$ systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios", Korean J. Chem. Eng., 19, 309 (2002). https://doi.org/10.1007/BF02698420
  15. S. Li, V. A. Tuan, J. L. Falconer, and R. D. Noble, "X-type zeolite membranes: Preparation, characterization, and pervaporation performance", Microporous Mesoporous Mater, 53, 59 (2002). https://doi.org/10.1016/S1387-1811(02)00324-4
  16. V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, and D. G. Vlachos, "Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures", J. Membr. Sci., 184, 209 (2009).
  17. I. G. Giannakopoulos and V. Nikolakis, "Separation of propylene/propane mixtures using faujasite-type zeolite membranes", Ind. Eng. Chem. Res., 44, 226 (2005). https://doi.org/10.1021/ie049508r
  18. M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/ propane separation", Ind. Eng. Chem. Res., 51, 944 (2012). https://doi.org/10.1021/ie201606k
  19. S. Divekar, A. Nanoti, S. Dasgupta, Aarti, R. Chauhan, P. Gupta, M. O. Garg, S. P. Singh, and I. M. Mishra, "Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory", J. Chem. Eng. Data., 61, 2629 (2016). https://doi.org/10.1021/acs.jced.6b00294
  20. F. A. Da Silva and A. E. Rodrigues, "Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets", Ind. Eng. Chem. Res., 38, 2051 (1999). https://doi.org/10.1021/ie980640z
  21. J. Kager, "Measurement of diffusion in zeolites: A never ending challenge?", Adsorption, 9, 29 (2003). https://doi.org/10.1023/A:1023811229823
  22. A. Germanus, J. Kager, and H. Pfeifer, "Self-diffusion of paraffins and olefins in zeolite Na-X under the influence of residual water molecules", Zeolites, 4, 188 (1984). https://doi.org/10.1016/0144-2449(84)90059-9
  23. J. Kager and D. M. Ruthven, "On the comparison between macroscopic and n.m.r, measurements of intracrystalline diffusion in zeolites", Zeolites, 9, 267 (1989). https://doi.org/10.1016/0144-2449(89)90071-7
  24. I. H. Doetsch and D. M. Ruthven, "Diffusion of Hydrocarbons in 13X Zeolite", AlChE. J., 22, 882 (1976). https://doi.org/10.1002/aic.690220511
  25. J. Kager and P. Volkmer, "Comparison of predicted and nuclear magnetic resonance zeolitic diffusion coefficients", J.C.S., 76, 1562 (1980).
  26. M. A. Granato, M. Jorge, T. J. H. Vlugt, and A. E. Rodrigues, "Diffusion of propane, propylene and isobutane in 13X zeolite by molecular dynamics", Chem. Eng. Sci., 65, 2656 (2010). https://doi.org/10.1016/j.ces.2009.12.044
  27. S. Palmas, A. M. Polcaro, R. Carta, and G. Tola, "Sorption and Diffusion of Light Hydrocarbons on Na-Y Zeolites", J. Chem. Eng. Data., 36, 1 (1991). https://doi.org/10.1021/je00001a001
  28. A. Azimi and M. Mirzaei, "Determination of effective diffusion coefficient of methane adsorption on activated carbon", World Applied Sciences Journal, 17, 1109 (2012).
  29. Y. H. Oh, J. H. Lee, and D. H. Lee, "Adsorption and diffusion properties of heavy metals in zeolite synthesized from coal fly ash", J. Korea Solid Wastes Engineering Society, 17, 201 (2000).
  30. D. Saha, Z. Bao, F. Jia, and S. Deng, "Adsorption of $CO_2$, $CH_4$, $N_2$O, and $N_2$ on MOF-5, MOF-177, and Zeolite 5A", Environ. Sci. Technol., 44, 1820 (2010). https://doi.org/10.1021/es9032309
  31. H. H. Min, Y. I. Park, J. S. Chang, Y. K. Park, and C. H. Cho, "Elucidation of the mechanism of propylene/propane separation through faujasite zeolite membrane", Membr. J., 28, 351 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.351
  32. I. Mamaliga, W. Schabel, and M. Kind, "Measurements of sorption isotherms and diffusion coefficients by means of a magnetic suspension balance", Chem. Eng. Proc., 43, 753 (2004). https://doi.org/10.1016/S0255-2701(03)00077-1