DOI QR코드

DOI QR Code

Preparation and Fundamental Characterization of EVOH Hollow Fiber Membranes via Thermally Induced Phase Separation (TIPS)

열유도상분리법을 이용한 EVOH 중공사 분리막의 제조 및 기본 특성

  • Hou, Jian (Department of Chemical Engineering, Zibo Vocational Institute) ;
  • Yun, Jaehan (Department of Chemical Engineering, Keimyung University) ;
  • Jeon, Sungil (MEMBRARE Co., Ltd.) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • 후건 (쯔보 직업대학교 화학공학과) ;
  • 윤재한 (계명대학교 화학공학과) ;
  • 전성일 (주식회사 멤브레어) ;
  • 정건용 (서울과학기술대학교 화공생명공학과) ;
  • 변홍식 (계명대학교 화학공학과)
  • Received : 2018.12.07
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

Poly(ethylene-co-vinylalcohol) EVOH hollow fiber membranes were successfully fabricated via a thermally induced phase separation (TIPS) method. It was observed that all membranes fabricated under different spinning conditions had interconnected and bicontinuous structures through liquid-liquid phase separation. Glycerol and poly(ethylene glycol) 200 were used as diluents for the TIPS method. Glycerol was used as a mixing component in quenching bath to control pores on the outer surface of the hollow fiber membrane. Hot quenching bath with a mixing component to generate large pores on the outer surface of the hollow fiber membrane. The effects of polymer concentration, diluent and quenching bath on the morphologies, water permeabilities, and mechanical properties of the EVOH hollow fiber membranes were systematically investigated. The relationship between water permeability, mechanical properties and spinning conditions was discussed in detail.

본 연구에서 Poly(ethylene-co-vinylalcohol) EVOH 중공사막은 열유도상분리(TIPS)법을 이용하여 제조하였다. 다양한 조건에서 제조된 모든 분리막에서 액-액 상분리에 의해 기공이 서로 연결되어 있는 스폰지 구조가 관찰되었다. 글리세롤과 PEG200은 TIPS 방법에서 희석제로 사용하였고, 냉각조에 글리세롤을 혼합한 냉매를 사용하여 중공사 외표면의 기공을 조절하였다. 또한 혼합냉매의 온도를 높여 큰 기공의 형성을 유도하였다. 본 연구에서는 고분자의 농도, 희석제, 냉각조의 영향에 따른 분리막의 구조, 투과도, 기계적 강도에 대해 실험을 통해 알아보고 상호관계에 대해 심도 있게 연구하였다.

Keywords

References

  1. H. Karkhanechi, S. Rajabzadeh, E. Di Nicolò, H. Usuda, A. R. Shaikh, and H. Matsuyama, "Preparation and characterization of ECTFE hollow fiber membranes via thermally induced phase separation (TIPS)", Polymer, 97, 515-524 (2016). https://doi.org/10.1016/j.polymer.2016.05.067
  2. I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, "Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments", J. Membr. Sci., 457, 62-72 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
  3. S. Karan, Z. Jiang, and A. G. Livingston, "Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation", Science, 348, 1347-1351 (2015). https://doi.org/10.1126/science.aaa5058
  4. P. Marchetti, M. F. Jimenez Solomon, G. Szekely, and A. G. Livingston, "Molecular separation with organic solvent nanofiltration: A critical review", Chem. Rew., 114, 10735-10806 (2014). https://doi.org/10.1021/cr500006j
  5. R. W. Baker, "Membrane Technology and Applications, 3rd Edition", Wiley, West Sussex, United Kingdom (2012).
  6. H. Matsuyama, S. Rajabzadeh, H. Karkhanechi, and S. Jeon, "1.7 PVDF hollow fibers membranes, in: Comprehensive membrane science and engineering (second edition)", Elsevier, Oxford, 137-189 (2017).
  7. J. Yang, D. W. Li, Y. K. Lin, X. L. Wang, F. Tian, and Z. Wang, "Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation", J. Appl. Polym. Sci., 110, 341-347 (2008). https://doi.org/10.1002/app.28606
  8. Y. Tang, Y. Lin, W. Ma, Y. Tian, J. Yang, and X. Wang, "Preparation of microporous PVDF membrane via tips method using binary diluent of DPK and PG", J. Appl. Polym. Sci., 118, 3518-3523 (2010). https://doi.org/10.1002/app.32696
  9. S. Rajabzadeh, C. Liang, Y. Ohmukai, T. Maruyama, and H. Matsuyama, "Effect of additives on the morphology and properties of poly(vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method", J. Membr. Sci., 423-424, 189-194 (2012). https://doi.org/10.1016/j.memsci.2012.08.013
  10. S. Rajabzadeh, D. Ogawa, Y. Ohmukai, Z. Zhou, T. Ishigami, and H. Matsuyama, "Preparation of a PVDF hollow fiber blend membrane via thermally induced phase separation (TIPS) method using new synthesized zwitterionic copolymer", Desalination and Water Treatment, 54, 2911-2919 (2015). https://doi.org/10.1080/19443994.2014.912159
  11. S. S. Kim and D. R. Lloyd, "Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes" J. Membr. Sci., 64, 13-29 (1991). https://doi.org/10.1016/0376-7388(91)80074-G
  12. H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, and N. Kubota, "Preparation of polyethylene hollow fiber membrane via thermally induced phase separation", J. Membr. Sci., 223, 119-126 (2003). https://doi.org/10.1016/S0376-7388(03)00314-4
  13. H. Matsuyama, K. Ohga, T. Maki, M. Tearamoto, and S. Nakatsuka, "Porous cellulose acetate membrane prepared by thermally induced phase separation", J. Appl. Polym. Sci., 89, 3951-3955 (2003). https://doi.org/10.1002/app.12785
  14. S.-W. Song and J. M. Torkelson, "Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions", J. Membr. Sci., 98, 209-222 (1995). https://doi.org/10.1016/0376-7388(94)00189-6
  15. Y.-R. Qiu, N. A. Rahman, and H. Matsuyama, "Preparation of hydrophilic poly(vinyl butyral)/ pluronic F127 blend hollow fiber membrane via thermally induced phase separation", Sep. Purif. Technol., 61, 1-8 (2008). https://doi.org/10.1016/j.seppur.2007.09.014
  16. M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, and N. Kubota, "Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation", Polymer, 44, 7441-7447 (2003). https://doi.org/10.1016/j.polymer.2003.08.033
  17. M. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, and N. Kubota, "Effect of glycerol content in cooling bath on performance of poly(ethylene- co-vinyl alcohol) hollow fiber membranes", Sep. Purif. Technol., 45, 208-212 (2005). https://doi.org/10.1016/j.seppur.2005.04.013
  18. D. L. VanderHart, S. Simmons, and J. W. Gilman, "Solid State 13C NMR of ethylene/vinyl alcohol copolymers: morphological partitioning of hydroxyls", Polymer, 36, 4223-4232 (1995). https://doi.org/10.1016/0032-3861(95)92217-3
  19. E.-R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, and G. E. Wnek, "Electrospinning of poly(ethylene-co-vinyl alcohol) fibers", Biomaterials, 24, 907-913 (2003). https://doi.org/10.1016/S0142-9612(02)00422-2
  20. J. Zhou, H. Zhang, H. Wang, and Q. Du, "Effect of cooling bathes on EVOH microporous membrane structures in thermally induced phase separation", J. Membr. Sci., 343, 104-109 (2009). https://doi.org/10.1016/j.memsci.2009.07.029
  21. M.-G. Virginia, L.-C. Gracia, G. Rafael, and H.-M. Pilar, "Antimicrobial food packaging film based on the release of LAE from EVOH", Int. J. of Food Microbiol., 157, 239-244 (2012). https://doi.org/10.1016/j.ijfoodmicro.2012.05.009
  22. M. M. Eva, V. G. Jose, D. Irene, V. G.-A Jose, M.-C. Rufino, G. Rafael, and J. Misericordia, "Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize", Int. J. of Food Microbiol., 254, 36-46 (2017). https://doi.org/10.1016/j.ijfoodmicro.2017.05.007
  23. D. R. Lloyd, K. E. Kinzer, and H. S. Tseng, "Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation", J. Membr. Sci., 52, 239-261 (1990). https://doi.org/10.1016/S0376-7388(00)85130-3
  24. D. R. Lloyd, S. S. Kim, and K. E. Kinzer, "Microporous membrane formation via thermallyinduced phase separation. II. Liquid-liquid phase separation", J. Membr. Sci., 64, 1-11 (1991). https://doi.org/10.1016/0376-7388(91)80073-F
  25. Y. Lin, Y. Tang, H. Ma, J. Yang, Y. Tian, W. Ma, and X. Wang, "Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation", J. Appl. Polym. Sci., 114, 1523-1528 (2009). https://doi.org/10.1002/app.30622
  26. Y.-H. Tang, Y.-K. Lin, B. Zhou, and X.-L. Wang, "PVDF membranes prepared via thermally induced (liquid-liquid) phase separation and their application in municipal sewage and industry wastewater for water recycling", Desalination and Water Treatment, 57, 22258-22276 (2016). https://doi.org/10.1080/19443994.2015.1136692
  27. S. Jeon, H. Karkhanechi, L. Fang, L. Cheng, T. Ono, R. Nakamura, and H. Matsuyama, "Novel preparation and fundamental characterization of polyamide 6 selfsupporting hollow fiber membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 546, 1-14 (2018). https://doi.org/10.1016/j.memsci.2017.10.008
  28. P. Sukitpaneenit and T.-S. Chung, "Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology", J. Membr. Sci., 340, 192-205 (2009). https://doi.org/10.1016/j.memsci.2009.05.029
  29. B. J. Cha and J. M. Yang, "Effect of high-temperature spinning and PVP additive on the properties of PVDF hollow fiber membranes for microfiltration", Macromol. Res., 14, 596-602 (2006). https://doi.org/10.1007/BF03218730
  30. J. F. Kim, J. H. Kim, Y. M. Lee, and E. Drioli, "Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review", AIChE J., 62, 461-490 (2016). https://doi.org/10.1002/aic.15076
  31. Z. Cui, N. T. Hassankiadeh, S. Y. Lee, J. M. Lee, K. T. Woo, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation", J. Membr. Sci., 444, 223-236 (2013). https://doi.org/10.1016/j.memsci.2013.05.031
  32. Z. Cui, N. T. Hassankiadeh, S. Y. Lee, K. T. Woo, J. M. Lee, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent", J. Membr. Sci., 473, 128-136 (2015). https://doi.org/10.1016/j.memsci.2014.09.019
  33. C. Fang, S. Jeon, S. Rajabzadeh, L. Fang, L. Cheng, and H. Matsuyama, "Tailoring both the surface pore size and sub-layer structures of PVDF membranes prepared by the TIPS process with a triple orifice spinneret", J. of Mater. Chem. A, 6, 20712-20724 (2018). https://doi.org/10.1039/C8TA07603K